General Specifications

ROTA**MASS** Total Insight Coriolis Mass Flow and Density Meter Nano

GS 01U10B01-00EN-R

Scope of application

- Precise flow rate measurement of fluids and gases, multi-phase fluids and fluids with specific gas content using the Coriolis principle.
- Direct measurement of mass flow and density independent of the fluid's physical properties, such as density, viscosity and homogeneity
- Fluid temperatures of -50 260 °C (-58 – 500 °F)
- Process pressures up to 285 bar
- EN, ASME, JPI or JIS standard flange process connections up to three nominal diameters per meter size, thread
- Connection to common process control systems, such as via HART 7 or Modbus
- Hazardous area approvals: IECEx, ATEX, FM (USA/Canada), NEPSI, INMETRO, PESO, Taiwan Safety Label
- Safety-related applications: PED per AD 2000 Code, SIL 2, secondary containment up to 65 bar
- Marine type approval: DNV GL

Advantages and benefits

- Inline measurement of several process variables, such as mass, density and temperature
- Advanced functions like Net Oil Computing, Batching function and Viscosity function to avoid external dedicated flow computer.
- Adapterless installation due to multi-size flange concept
- No straight pipe runs at inlet or outlet required
- Fast and uncomplicated commissioning and operation of the flow meter
- Maintenance-free operation
- Functions that can be activated subsequently (Features on Demand)
- Total health check (diagnostic function): Self-monitoring of the entire flow meter, including accuracy
- Maximum accuracy due to calibration facility accredited according to ISO/IEC 17025 (for option K5)
- Self-draining installation

Table of contents

1	Intro	oduction.		5
	1.1	Applica	ble documents	5
	1.2	Produc	t overview	6
2	Меа	suring p	rinciple and flow meter design	7
	2.1	Measur	ing principle	7
	2.2	Flow m	eter	9
3	Арр	lication a	and measuring ranges	12
	3.1	Measur	ed quantities	12
	3.2		ing range overview	13
	3.3		ow	13
	3.4		• flow	14
	3.5		re loss	14
	3.6		·	14
	3.7		rature	14
4				15
	4.1		2W	15
	4.2		bint stability of the mass flow	16
	4.3		ow accuracy	16
		4.3.1	Sample calculation for liquids	17
		4.3.2	Sample calculation for gases	18
	4.4		cy of density	19
		4.4.1	For liquids	19
		4.4.2	For gases	19
	4.5		cy of mass flow and density according to the model code	20
		4.5.1	•	20
		4.5.2		20
	4.6		5	21
		4.6.1	For liquids	
		4.6.2	5	21
	4.7		cy of temperature	21
	4.8	•	ability	22
	4.9		tion conditions	23
		4.9.1	Mass flow calibration and density adjustment	23
		4.9.2	Density calibration	23
			s pressure effect	23
	4.11	Process	s fluid temperature effect	24
5	-	-		25
	5.1		n and position of installation	25
		5.1.1	Sensor installation position	25
	5.2	Installa	tion instructions	27
	5.3	Process	s conditions	27
		5.3.1	Process fluid temperature range	27
		5.3.2	Density	28
		5.3.3	Pressure	28

		5.3.4	Mass flow	32
		5.3.5	Effect of temperature on accuracy	32
		5.3.6	Insulation and heat tracing	33
		5.3.7	Secondary containment	34
	5.4	Ambier	nt conditions	34
		5.4.1	Allowed ambient temperature for sensor	36
		5.4.2	Temperature specification in hazardous areas	38
6	Moc	hanical	specification	
0			•	
	6.1	•		
	6.2		Nactorial	
		6.2.1	Material wetted parts	
		6.2.2	Non-wetted parts	
	6.3		s connections, dimensions and weights of sensor	
	6.4	Transm	nitter dimensions and weights	50
7	Trar	nsmitter s	specification	52
	7.1	Inputs a	and outputs	53
		7.1.1	Output signals	54
		7.1.2	Input signals	60
	7.2	Power	supply	
	7.3		specification	
8	۸dv		nctions and Features on Demand (FOD)	
0	8.1			
			ntration and petroleum measurement	
	8.2		ng function	
	8.3		ty function	
	8.4		ealth check	
	8.5		rement of heat quantity	
	8.6	Feature	es on Demand (FOD)	68
9	Арр	rovals ar	nd declarations of conformity	69
10	Ord	ering info	ormation	75
	10.1	Overvie	ew model code Nano 06	75
	10.2	Overvie	ew model code Nano 08	78
	10.3	Overvie	ew model code Nano 10	81
	10.4		ew model code Nano 15	85
	10.5		ew model code Nano 20	
	10.6		ew options	93
			code	98
	10.7	10.7.1	Transmitter	
		10.7.1	Sensor	
		10.7.3	Meter size	
		10.7.4	Material wetted parts	
		10.7.5	Process connection size	
		10.7.6	Process connection type	
		10.7.7	Sensor housing material	
		10.7.8	Process fluid temperature range	
		10.7.9	Mass flow and density accuracy	
		-		

	10.7.10	Design and housing	102
	10.7.11	Ex approval	103
	10.7.12	Cable entries	103
	10.7.13	Communication type and I/O	103
	10.7.14	Display	105
10.8	Options	·	106
	10.8.1	Connecting cable type and length	107
	10.8.2	Additional nameplate information	107
	10.8.3	Presetting of customer parameters	108
	10.8.4	Concentration and petroleum measurement	108
	10.8.5	Batching function	108
	10.8.6	Viscosity function	108
	10.8.7	Insulation and heat tracing	109
	10.8.8	Certificates	109
	10.8.9	Country-specific delivery	112
	10.8.10	Country-specific application	112
	10.8.11	Tube health check	112
	10.8.12	Fixing device	113
	10.8.13	Measurement of heat quantity	113
	10.8.14	Marine Approval	114
	10.8.15	Customer specific special product manufacture	
10.9	Orderin	g Instructions	115

1 Introduction

1.1 Applicable documents

For Ex approval specification, refer to the following documents:

- Explosion Proof Type Manual ATEX IM 01U10X01-00__-R¹⁾
- Explosion Proof Type Manual IECEx IM 01U10X02-00__-R¹⁾
- Explosion Proof Type Manual FM IM 01U10X03-00__-R¹⁾
- Explosion Proof Type Manual INMETRO IM 01U10X04-00__-R¹⁾
- Explosion Proof Type Manual PESO IM 01U10X05-00__-R¹⁾
- Explosion Proof Type Manual NEPSI IM 01U10X06-00__-R¹⁾
- Explosion Proof Type Manual KOREA Ex IM 01U10X07-00__-R¹⁾
- Explosion Proof Type Manual EAC Ex IM 01U10X08-00__-R¹⁾

Other applicable User's manuals:

Protection of Environment (Use in China only) IM 01A01B01-00ZH-R

¹⁾ The "_" symbols are placeholders. Here for example, for the corresponding language version (DE, EN, etc.).

1.2 Product overview

Rotamass Total Insight Coriolis mass flow and density meters are available in various product families distinguished by their applications. Each product family includes several product alternatives and additional device options that can be selected.

The following overview serves as a guide for selecting products.

		For low flow rate applications
	1000	Meter sizes: Nano 06, Nano 08, Nano 10, Nano 15,
Rotamass		Nano 20
Nano	H H	Connection sizes:
		 DN15, DN25, DN40
		• ¹ / ₄ ", ³ / ₈ ", ¹ / ₂ ", ³ / ₄ ", 1", 1 ¹ / ₂ "
		Maximum mass flow: 1.5 t/h (55 lb/min)
		Versatility with low costs for the operator
	30	Meter sizes: Prime 25, Prime 40, Prime 50, Prime 80
Rotamass Prime		Connection sizes:
Filline		 DN15, DN25, DN40, DN50, DN80 3(11, 1(11, 3(11, 41), 01, 01(11, 01))
		• ³ / ₈ ", ¹ / ₂ ", ³ / ₄ ", 1", 1 ¹ / ₂ ", 2", 2 ¹ / ₂ ", 3"
		Maximum mass flow: 76 t/h (2800 lb/min)
		Excellent performance under demanding conditions
		Meter sizes: Supreme 34, Supreme 36, Supreme 38, Supreme 39
Rotamass		Connection sizes:
Supreme	-	 DN15, DN25, DN40, DN50, DN65, DN80, DN100, DN125
		3/8", 1/2", 3/4", 1", 11/2", 2", 21/2", 3", 4", 5"
		Maximum mass flow: 170 t/h (6200 lb/min)
	- Îb	For high process pressure applications
Rotamass		Meter sizes: Intense 34, Intense 36, Intense 38
Intense	ON D	Connection sizes:
	, 280s	■ ³ ⁄ ₈ ", ¹ ⁄ ₂ ", ³ ⁄ ₄ ", 1", 2"
		Maximum mass flow: 50 t/h (1800 lb/min)
		For food, beverage and pharmaceutical applications
	H	Meter sizes: Hygienic 25, Hygienic 40, Hygienic 50, Hygienic 80
Rotamass		Connection sizes:
Hygienic		 DN25, DN40, DN50, DN65, DN80
		1", 1½", 2", 2½", 3"
		Maximum mass flow: 76 t/h (2800 lb/min)
		For high flow rate applications
		Meter sizes: Giga 1F, Giga 2H
Rotamass	i U	Connection sizes:
Giga		 DN100, DN125, DN150, DN200
		 4", 5", 6", 8"
		Maximum mass flow: 600 t/h (22000 lb/min)

YOKOGAWA 🔶

Overview of Rotamass Total Insight product families

2 Measuring principle and flow meter design

2.1 Measuring principle

The measuring principle is based on the generation of Coriolis forces. For this purpose, a driver system (E) excites the two measuring tubes (M1, M2) in their first resonance frequency. Both pipes vibrate inversely phased, similar to a resonating tuning fork.

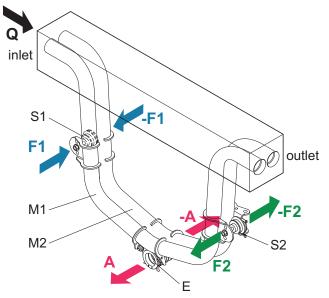


Fig. 1: Coriolis principle

M1,M2	Measuring tubes	E	Driver system
S1, S2	Pick-offs	A	Direction of measuring tube vibration
F1, F2	Coriolis forces	Q	Direction of fluid flow

Mass flow

The fluid flow through the vibrating measuring tubes generates Coriolis forces (F1, -F1 and F2, -F2) that produce positive or negative values for the tubes on the inflow or outflow side. These forces are directly proportional to the mass flow and result in deformation (torsion) of the measuring tubes.

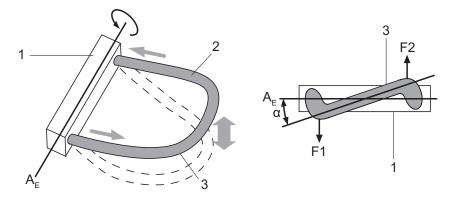


Fig. 2: Coriolis forces and measuring tube deformation

1	Measuring tube mount	A _E	Rotational axis
2	Fluid	F1, F2	Coriolis forces
3	Measuring tube	α	Torsion angle

The small deformation overlying the fundamental vibration is recorded by means of pickoffs (S1, S2) attached at suitable measuring tube locations. The resulting phase shift $\Delta \varphi$ between the output signals of pick-offs S1 and S2 is proportional to the mass flow. The output signals generated are further processed in a transmitter.

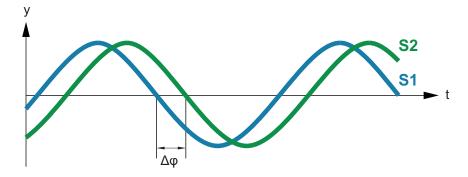


Fig. 3: Phase shift between output signals of S1 and S2 pick-offs

$\Delta \varphi \sim$	$F_{\rm c} \sim \frac{{\rm d}m}{{\rm d}t}$
$\Delta \varphi$	Phase shift
т	Dynamic mass
t	Time
dm/dt	Mass flow
$F_{\rm c}$	Coriolis force

Density measurement

Using a driver and an electronic regulator, the measuring tubes are operated in their resonance frequency f. This resonance frequency is a function of measuring tube geometry, material properties and the mass of the fluid covibrating in the measuring tubes. Altering the density and the attendant mass will alter the resonance frequency. The transmitter measures the resonance frequency and calculates density from it according to the formula below. Device-dependent constants are determined individually during calibration.

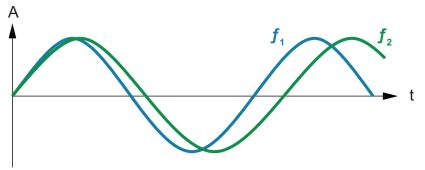


Fig. 4: Resonance frequency of measuring tubes

- A Measuring tube displacement
- f_1 Resonance frequency with fluid 1
- f_2 Resonance frequency with fluid 2

P	$p = \frac{\alpha}{f^2} + \beta$	
ρ		Fluid density
f		Resonance frequency of measuring tubes
~	0	

 α, β Device-dependent constants

Temperature measurement

The measuring tube temperature is measured in order to compensate for the effects of temperature on the flow meter. This temperature approximately equals the fluid temperature and is made available as a measured quantity at the transmitter as well.

2.2 Flow meter

The Rotamass Coriolis flow meter consists of:

- Sensor
- Transmitter

When the remote type is used, sensor and transmitter are linked via connecting cable. As a result, sensor and transmitter can be installed in different locations.

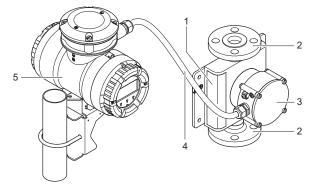


Fig. 5: Configuration of the Rotamass remote type

1	Sensor	4	Connecting cable
2	Process connections	5	Transmitter

- 3 Sensor terminal box

Fig. 6: Configuration of the Rotamass remote type - long neck

1	Sensor	4	Connecting cable
2	Process connections	5	Transmitter

- 3 Sensor terminal box
- al hox

Measuring principle and flow meter design

General
specificationsAll available properties of the Rotamass Coriolis flow meter are specified by means of a
model code.

One model code position may include several characters depicted by means of dashed lines.

The positions of the model code relevant for the respective properties are depicted and highlighted in blue. Any values that might occupy these model code positions are subsequently explained.

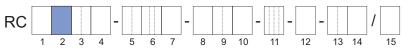
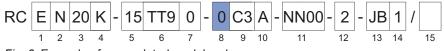
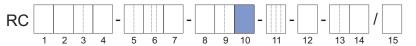
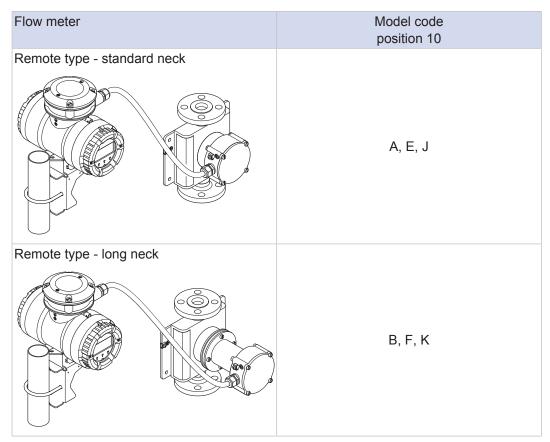


Fig. 7: Highlighted model code positions


Fig. 8: Example of a completed model code

A complete description of the model code is included in the chapter entitled Ordering information [> 75].

Type of design

Position 10 of the model code defines whether the remote type is used. It specifies further flow meter properties, such as the transmitter coating, see *Design and housing* [> 102].

Transmitter overview Two different transmitters can be combined with the sensor: Essential and Ultimate.

Essential transmitter is suitable for general purposes applications and it delivers accurate and precise measurements of flow rate and density.

Ultimate transmitter, thanks to the advanced functions and "Features on Demand", offers dedicated application solutions with a superior accuracy and performances in measuring flow rate, density and concentration.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15					
Transmitter	Properties	Model code position 1			
Essential	 Down to 0.2 % mass flow accuracy for liquids Down to 0.75 % mass flow accuracy for gases Down to 4 g/l (0.25 lb/ft³) accuracy for density Total health check (diagnostic function) Advanced functions: Tube health check (diagnostic function) HART communication Modbus communication Data backup on microSD card 	E			
Ultimate	 Down to 0.1 % mass flow accuracy for liquids Down to 0.5 % mass flow accuracy for gases Down to 0.5 g/l (0.03 lb/ft³) accuracy for density Total health check (diagnostic function) Advanced functions: Standard concentration measurement Advanced concentration measurement Net Oil Computing following API standard Viscosity function Batching function Measurement of heat quantity Tube health check (diagnostic function) Features on Demand HART communication Dota backup on microSD card 	U			

3 Application and measuring ranges

3.1 Measured quantities

The Rotamass Coriolis flow meter can be used to measure the following fluids:

- Liquids
- Gases
- Mixtures, such as emulsions, suspensions, slurries

Possible limitations applying to measurement of mixtures must be checked with the responsible Yokogawa sales organization.

The following variables can be measured using the Rotamass:

- Mass flow
- Density
- Temperature

Based on these measured quantities, the transmitter also calculates:

- Volume flow
- Partial component concentration of a two-component mixture
- Partial component flow rate of a mixture consisting of two components (net flow)

In this process, the net flow is calculated based on the known partial component concentration and the overall flow.

3.2 Measuring range overview

			1		1	1
	Nano 06	Nano 08	Nano 10	Nano 15	Nano 20	
Mass flow range						
Typical connecti on size	DN15, ½"	DN15, ½"	DN15, ½"	DN15, ½"	DN15, ½"	
Q _{nom}	0.021 t/h (0.77 lb/min)	0.045 t/h (1.7 lb/min)	0.17 t/h (6.2 lb/min)	0.37 t/h (14 lb/min)	0.95 t/h (35 lb/min)	[▶ 13]
Q _{max}	0.04 t/h (1.5 lb/min)	0.094 t/h (3.5 lb/min)	0.3 t/h (11 lb/min)	0.6 t/h (22 lb/min)	1.5 t/h (55 lb/min)	
Maximur	n volume flow					
(Water)	0.04 m ³ /h (0.34 barrel/h)	0.094 m ³ /h (0.79 barrel/h)	0.3 m ³ /h (2.5 barrel/h)	0.6 m ³ /h (5 barrel/h)	1.5 m ³ /h (13 barrel/h)	[▶ 14]
Range of	f fluid density					
		(1	0 – 5 kg/l 0 – 310 lb/ft³)			[14]
Process	fluid temperat	ure range				
Stan- dard ¹⁾ -50 – 150 °C (-58 – 302 °F)						
Mid- range -50 − 260 °C (-58 − 500 °F)						[▶ 27]

¹⁾ May be further restricted depending on the design and process connection type.

Q_{nom} - Nominal mass flow

Q_{max} - Maximum mass flow

The nominal mass flow Q_{nom} is defined as the mass flow of water (temperature: 20 °C) at 1 bar pressure loss along the flow meter.

3.3 Mass flow

For Rotamass Nano the following meter sizes to be determined using the *Model code* [> 98] are available.

RC		Ν			-			-						-		/	
	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	5

Meter size	Typical connection size	Q _{nom} in t/h (lb/min)	Q _{max} in t/h (lb/min)	Model code position 3
Nano 06	DN15, ½"	0.021 (0.77)	0.04 (1.5)	06
Nano 08	DN15, ½"	0.045 (1.7)	0.094 (3.5)	08
Nano 10	DN15, ½"	0.17 (6.2)	0.3 (11)	10
Nano 15	DN15, ½"	0.37 (14)	0.6 (22)	15
Nano 20	DN15, ½"	0.95 (35)	1.5 (55)	20

Mass flow of gases

Mass flow of liquids

When using the Rotamass for measuring the flow of gases, the mass flow is usually limited by the pressure loss generated and the maximum flow velocity. Since these depend heavily on the application, please contact the local Yokogawa sales organization.

3.4 Volume flow

Volume flow of liquids (water at 20 °C)

Meter size	Volume flow (at 1 bar pressure loss) in m³/h (barrel/h)	Maximum volume flow in m³/h (barrel/h)
Nano 06	0.021 (0.18)	0.04 (0.34)
Nano 08	0.045 (0.38)	0.094 (0.79)
Nano 10	0.17 (1.4)	0.3 (2.5)
Nano 15	0.37 (3.1)	0.6 (5)
Nano 20	0.95 (8)	1.5 (13)

Volume flow of gases

When using the Rotamass for measuring the flow of gases, the flow rate is usually limited by the pressure loss generated and the maximum flow velocity. Since these depend heavily on the application, please contact the local Yokogawa sales organization.

3.5 Pressure loss

The pressure loss along the flow meter is heavily dependent on the application. The pressure loss of 1 bar at nominal mass flow Q_{nom} also applies to water and is considered the reference value.

3.6 Density

Meter size	Measuring range of density
Nano 06	
Nano 08	
Nano 10	0 – 5 kg/l (0 – 310 lb/ft³)
Nano 15	
Nano 20	

Rather than being measured directly, density of gas is usually calculated using its reference density, process fluid temperature and process pressure.

3.7 Temperature

The process fluid temperature measuring range is limited by:

- Design type (integral or remote)
- Process connection size and type
- Ex approvals

Maximum measuring range: -50 - 260 °C (-58 - 500 °F)

4 Accuracy

In this chapter, maximum deviations are indicated as absolute values.

 (\mathbf{i})

All accuracy data are given in ± values.

4.1 Overview

Achievable accuracies for liquids

Achievable accuracies for gases

The value D_{flat} specified for accuracy of mass flow applies for flow rates exceeding the mass flow limit Q_{flat} . If the flow rate is less then Q_{flat} , other effects have to be considered.

The following values are achieved at calibration conditions when the device is delivered, see *Calibration conditions* [23]. For small meter sizes, specifications may not be as accurate, see *Mass flow and density accuracy* [101].

Measured quanti	ty	Accuracy for transmitters			
		Essential	Ultimate		
Mass flow ¹⁾	Accuracy ²⁾ D _{flat}	0.2 % of measured value	0.1 % of measured value		
IVIdSS IIUW	Repeatability	0.1 % of measured value	0.05 % of measured value		
Volume flow	Accuracy ²⁾ D_V	0.45 % of measured value	0.12 % of measured value		
(water) ¹⁾	Repeatability	0.23 % of measured value	0.06 % of measured value		
Donaity	Accuracy ²⁾	4 g/l (0.25 lb/ft ³)	0.5 g/l (0.03 lb/ft ³)		
Density	Repeatability	2 g/l (0.13 lb/ft ³)	0.3 g/l (0.02 lb/ft ³)		
Temperature	Accuracy ²⁾	0.5 °C (0.9 °F)	0.5 °C (0.9 °F)		

¹⁾ Based on the measured values of the pulse output. This means that the flow accuracy and repeatability considers the combined measurement uncertainties including sensor, electronic and pulse output interface.

²⁾ Best accuracy per transmitter type.

The connecting cable may influence the accuracy. The values specified are valid for connecting cables \leq 30 m (98.4 ft) long.

Measured quantit	.y	Accuracy for transmitters			
		Essential	Ultimate		
Mass flow /		0.75 % of measured value	0.5 % of measured value		
standard volume flow ¹⁾	Repeatability	0.6 % of measured value	0.4 % of measured value		
Temperature	Accuracy ²⁾	0.5 °C (0.9 °F)	0.5 °C (0.9 °F)		

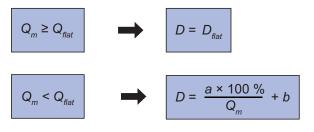
¹⁾ Based on the measured values of the pulse output. This means that the flow accuracy and repeatability considers the combined measurement uncertainties including sensor, electronic and pulse output interface.

²⁾ Best mass flow accuracy per transmitter type.

In the event of fluid temperature jumps, a delay is to be expected in the temperature being displayed due to low heat capacity and heat conductivity of gases.

The connecting cable may influence the accuracy. The values specified are valid for connecting cables \leq 30 m (98.4 ft) long.

4.2 Zero point stability of the mass flow


In case of no flow, the maximum measured flow rate is called *Zero point stability*. Zero point values are shown in the table below.

Meter size	Zero point stability Z in kg/h (lb/h)
Nano 06	0.003 (0.0066)
Nano 08	0.005 (0.011)
Nano 10	0.0085 (0.019)
Nano 15	0.019 (0.042)
Nano 20	0.048 (0.11)

4.3 Mass flow accuracy

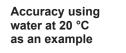
Above mass flow Q_{flat} , maximum deviation is constant and referred to as D_{flat} . It depends on the product version and can be found in the tables in chapter Accuracy of mass flow and density according to the model code [\triangleright 20].

Use the following formulas to calculate the maximum deviation *D*:

D Maximum deviation in %

*D*_{flat} Maximum deviation for high flow rates in %

- Q_m Mass flow in kg/h
- or high flow Q_{flat} Mass flow valu applies, in kg/h
- a, b Constants


flat Mass flow value above which D_{flat} applies, in kg/h

Meter size	Model code position 9	D _{flat} in %	Q _{flat} in kg/h	<i>a</i> in kg/h	b in %
	E9	0.2	2.52	0.0039	0.044
Nano 06	D9	0.15	2.8	0.0035	0.026
Nano 06	70	0.75	2.52	0.0039	0.594
	50	0.5	2.8	0.0035	0.376
	E8	0.2	4.5	0.0071	0.043
	D8	0.15	5	0.0061	0.028
Nano 08	C8	0.1	5.5	0.0054	0.002
	70	0.75	4.5	0.0062	0.613
	50	0.5	5.5	0.0054	0.402
	E7	0.2	8.5	0.021	-0.05
	D3, D7	0.15	11.3	0.012	0.043
Nano 10	C3, C7	0.1	17	0.0094	0.044
	70	0.75	8.5	0.014	0.583
	50	0.5	17	0.0094	0.444

Meter size	Model code position 9	D _{flat} in %	Q _{flat} in kg/h	<i>a</i> in kg/h	b in %
	E7	0.2	18.5	0.046	-0.05
	D2, D3, D7	0.15	24.7	0.026	0.043
Nano 15	C2, C3, C7	0.1	37	0.021	0.044
	70	0.75	18.5	0.031	0.583
	50	0.5	37	0.021	0.444
	E7	0.2	47.5	0.12	-0.05
	D2, D3, D7	0.15	63.3	0.068	0.043
Nano 20	C2, C3, C7	0.1	95	0.053	0.044
	70	0.75	47.5	0.079	0.583
	50	0.5	95	0.053	0.444

4.3.1 Sample calculation for liquids

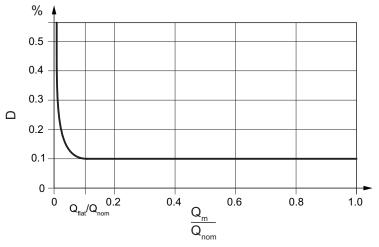


Fig. 9: Schematic dependency of the maximum deviation on the mass flow

D	Maximum	deviation	in	%

 Q_{nom} Nominal mass flow in kg/h

Mass flow in kg/h Mass flow above which D

Q_{flat}	Mass flow above which D_{flat}
	applies, in kg/h

Turn down Q _m :Q _{nom}	Maximum deviation D	Water pressure loss
1:100	0.6 %	≈ 0 mbar (0 psi)
1:40	0.27 %	0.7 mbar (0.01 psi)
1:10	0.1 %	10 mbar (0.15 psi)
1:2	0.1 %	250 mbar (3.62 psi)
1:1	0.1 %	1000 mbar (14.50 psi)

 $Q_{\rm m}$

Example

RC E N 20 K - 15 TT9 0 -	0 C3 A - NN00 - 2 - JB 1 /							
1 2 3 4 5 6 7	8 9 10 11 12 13 14 15							
Fluid:	Liquid							
Maximum deviation D _{flat} :	0.1 %							
Q _{flat} :	95 kg/h							
Constant a:	0.053 kg/h							
Constant b:	0.044 %							
Value of mass flow Q _m :	25 kg/h							

Calculation of flow rate condition:

Check whether $Q_m \ge Q_{flat}$.

 $Q = 25 \text{ kg/h} < Q_{\text{flat}} = 95 \text{ kg/h}$

As a result, accuracy is calculated using the following formula:

$$D = \frac{a \times 100 \%}{Q_m} + b$$

Calculation of accuracy:

D = 0.053 kg/h × 100 % / 25 kg/h + 0.044 %

D = 0.256 %

4.3.2 Sample calculation for gases

The maximum deviation in the case of gases depends on the product version selected, see also *Mass flow and density accuracy* [> 101].

Example

RC	Е	Ν	20	K	- 15	TT9	0	-	0	50	Α	-	NN0) -	2	-	JB	1	/	
	1	2	3	4	5	6	7		8	9	10		11		12		13	14	_	15
Fluid	d:								G	as										
Max	imu	m o	devi	atic	on D_{fla}	t.			0.	5 %										
Q_{flat} :									95	5 kg/	′h									
Con	star	nt a	:						0.	053	kg/	'n								
Con	star	nt b	:						0.	444	%									
Value of mass flow Q_m :						10) kg/	′h												
Calo	elu	tio	a of	th	o flov	v rato	con	di	tio	n.										

Calculation of the flow rate condition:

Check whether $Q_m \ge Q_{flat}$

 $Q_{\rm m}$ = 10 kg/h < $Q_{\rm flat}$ = 95 kg/h

As a result, the accuracy is calculated using the following formula:

 $D = \frac{a \times 100 \%}{Q_m} + b$

Calculation of accuracy:

D = 0.053 kg/h × 100 % / 10 kg/h + 0.444 % D = 0.97 %

4.4 Accuracy of density

4.4.1 For liquids

Meter size	Transmitter	Maximum deviation of density ¹⁾ in g/l (lb/ft ³)			
Nano 06					
Nano 08					
Nano 10	Essential	Down to 4 (0.25)			
Nano 15					
Nano 20					
Nano 06					
Nano 08					
Nano 10	Ultimate	Down to 0.5 (0.03)			
Nano 15					
Nano 20					

¹⁾ Deviations possible depending on product version (meter size, type of calibration)

The maximum deviation depends on the product version selected, see also Accuracy of mass flow and density according to the model code [> 20].

4.4.2 For gases

In most applications, density at standard conditions is fed into the transmitter and used to calculate the standard volume flow based on mass flow.

If gas pressure is a known value, after entering a reference density, the transmitter is able to calculate gas density from temperature and pressure as well (while assuming an ideal gas).

Alternatively, there is an option for measuring gas density. In order to do so, it is necessary to adapt the lower density limit value in the transmitter.


For most applications the direct measurement of the gas density will have insufficient accuracy.

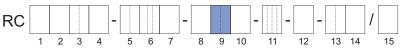
4.5 Accuracy of mass flow and density according to the model code

Accuracy for flow rate as well as density is selected via model code position 9. Here a distinction is made between devices for measuring liquids and devices for measuring gases. No accuracy for density measurement is specified for gas measurement devices.

4.5.1 For liquids

Essential

Model code	Maximum deviation	Applicable measuring	Maximum deviation <i>D</i> _{flat} for mass flow in %						
position 9	of density ¹⁾ in g/l	range of accuracy in kg/l	Nano 06	Nano 08	Nano 10	Nano 15	Nano 20		
E9	20	0.3 – 5	0.2	_	_	_	—		
E8	8	0.3 – 5	_	0.2	_	_	_		
E7	4	0.3 – 5	-	—	0.2	0.2	0.2		


¹⁾ Specified maximum deviation is achieved within the applicable measuring range for density.

Ultimate

Model code	Maximum deviation	measuring	asuring in %						
position 9	of density ¹⁾ in g/l	range of accuracy in kg/l	Nano 06	Nano 08	Nano 10	Nano 15	Nano 20		
D9	20	0.3 – 5	0.15	_	_	-	_		
D8	8	0.3 – 5	_	0.15	_	_	_		
D7	4	0.3 – 5	_	-	0.15	0.15	0.15		
D3	1	0.3 – 5	_	_	0.15	0.15	0.15		
D2	0.5	0.3 – 2.5	_	_	_	0.15	0.15		
C8	8	0.3 – 5	_	0.1	_	-	_		
C7	4	0.3 – 5	_	_	0.1	0.1	0.1		
C3	1	0.3 – 5	—	—	0.1	0.1	0.1		
C2	0.5	0.3 – 2.5	_	_	_	0.1	0.1		

¹⁾ Specified maximum deviation is achieved within the applicable measuring range for density.

4.5.2 For gases

Essential

Ultimate

Maximum deviation <i>D</i> _{fiat} of mass flow in %	Model code position 9
0.75	70
Maximum deviation D_{flat} of mass flow in %	Model code position 9
0.5	50

4.6 Volume flow accuracy

4.6.1 For liquids

The following formula can be used to calculate the accuracy of liquid volume flow:

$D_{\rm v} = \sqrt{D^2 + \left(\frac{\Delta\rho}{\rho} \times 100\%\right)^2}$
--

 $D_{\rm v}$ Maximum deviation of volume flow in %

Δρ Maximum deviation of density in kg/l

- *D* Maximum deviation of mass flow in %
- ρ Density in kg/l

4.6.2 For gases

Accuracy of standard volume flow for gas with a fixed composition equals the maximum deviation D of the mass flow.


```
\bigcirc
```

In order to determine the standard volume flow for gas, it is necessary to input a reference density in the transmitter. The accuracy specified is achieved only for fixed gas composites. Major deviations may appear if the gas composition changes.

4.7 Accuracy of temperature

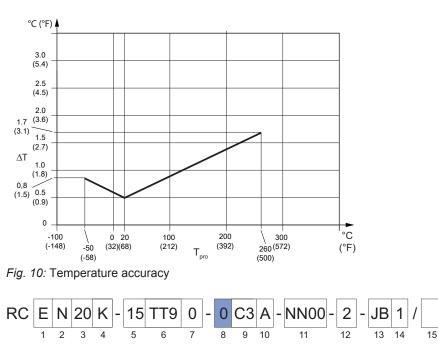
Various process fluid temperature ranges are specified for Rotamass Nano:

Standard:

- -50 - 150 °C (-58 - 302 °F)

• Mid-range:

- -50 - 260 °C (-58 - 500 °F)


Accuracy of temperature depends on the sensor temperature range selected (see *Process fluid temperature range [* 27]) and can be calculated as follows:

 $\Delta T = 0.5 \text{ °C} + 0.005 \times |T_{pro} - 20 \text{ °C}|$

ΔT Maximum deviation of temperature

T_{pro} Process fluid temperature in °C

The sample model code specifies the Standard temperature range.

Process fluid temperature T_{pro}: 50 °C

Calculation of accuracy:

 $\Delta T = 0.5 \ ^{\circ}C + 0.005 \times |50 \ ^{\circ}C - 20 \ ^{\circ}C|$ $\Delta T = 0.65 \ ^{\circ}C$

4.8 Repeatability

For liquids

Example

When using default damping times, the specified repeatability of mass flow, density and temperature measurements equals half of the respective maximum deviation.

R Repeatability

D Maximum deviation

For gases

In deviation hereto, the following applies to mass and standard volume flow of gases:

4.9 Calibration conditions

4.9.1 Mass flow calibration and density adjustment

All Rotamass are calibrated in accordance with the state of the art at Rota Yokogawa. Optionally, the calibration can be performed according to a method accredited by DAkkS in accordance with DIN EN ISO/IEC 17025 (Option K5, see *Certificates [*> 110]).

Each Rotamass device comes with a standard calibration certificate.

Calibration takes place at reference conditions. Specific values are listed in the standard calibration certificate.

	Reference conditions
Fluid	Water
Density	0.9 – 1.1 kg/l (56 – 69 lb/ft ³)
Fluid temperature	10 – 35 °C (50 – 95 °F)
Fluid temperature	Average temperature: 22.5 °C (72.5 °F)
Ambient temperature	10 – 35 °C (50 – 95 °F)
Process pressure (absolute)	1 – 2 bar (15 – 29 psi)

The accuracy specified is achieved at as-delivered calibration conditions stated.

4.9.2 Density calibration

Density calibration is performed for maximum deviation of 0.5 g/l (0.03 lb/ft³), (model code pos. 9 _2).

Density calibration includes:

- Determination of calibration constants for fluid densities at 0.7 kg/l (44 lb/ft³), 1 kg/l (62 lb/ft³) and 1.65 kg/l (103 lb/ft³) at 20 °C (68 °F) fluid temperature
- Determination of temperature compensation coefficients at 20 80 °C (68 176 °F)
- Check of results for fluid densities at 0.7 kg/l (44 lb/ft³), 1 kg/l (62 lb/ft³) and 1.65 kg/l (103 lb/ft³) at 20 °C (68 °F) fluid temperature
- Special configuration of the temperature sensor
- Creation of density calibration certificate

4.10 Process pressure effect

Process pressure effect is defined as the change in sensor flow and density deviation due to process pressure change away from the calibration pressure. This effect can be corrected by dynamic pressure input or a fixed process pressure.

Meter size	Deviation of Flow	,	Deviation of Density		
	in % of rate per bar	in % of rate per psi	in g/l per bar	in g/l per psi	
Nano 06	none	none	-0.016	-0.0011	
Nano 08	none	none	-0.016	-0.0011	
Nano 10	none	none	-0.017	-0.0012	
Nano 15	-0.0011	-0.00008	-0.033	-0.0023	
Nano 20	-0.0010	-0.00007	-0.260	-0.0179	

Tab. 1: Process pressure effect

on mass flow

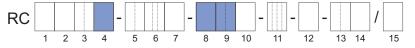
4.11 Process fluid temperature effect

For mass flow and density measurement, process fluid temperature effect is defined as the change in sensor flow and density accuracy due to process fluid temperature change away from the calibration temperature. For temperature ranges, see Process fluid temperature range [> 27].

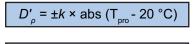
Temperature effect Temperature effect on Zero of mass flow can be corrected by zeroing at the process fluid on Zero temperature.

Temperature effect The process fluid temperature is measured and the temperature effect compensated. However due to uncertainties in the compensation coefficients and in the temperature measurement an uncertainty of this compensation is left. The typical rest error of Rotamass Total Insight temperature effect on mass flow is:

Tab. 2: All models


Temperature range	Uncertainty of flow
Standard, Mid-range	±0.001 % of rate / °C (±0.00056 % of rate / °F)

The temperature used for calculation of the uncertainty is the difference between process fluid temperature and the temperature at calibration condition. For temperature ranges, see fluid temperature range [> 27].


Temperature effect on density measurement (liquids)

Formula for metric values

Formula for imperial values

Process fluid temperature influence:

 $D'_{o} = \pm k \times \text{abs} (T_{oro} - 68 \text{ }^{\circ}\text{F})$

- Additional density deviation due to the effect of fluid temperature in g/l (lb/ft³) D'_{\circ}
- Process fluid temperature in °C (°F) T_{pro}
- k Constant for temperature effect on density measurement in g/l × 1/°C (lb/ft³ × 1/°F)

Tab. 3: Constants for particular meter size and model code position (see also Process fluid temperature range [> 27] and Mass flow and density accuracy [> 101])

Meter size	Model code position 4	Model code position 8	Model code position 9	<i>k</i> in g/l × 1/°C (lb/ft³ × 1/°F)
Nano 06			D9, E9	0.710 (0.0246
Nano 08	_		C8, D8, E8	0.440 (0.0153)
Nano 10		0, 2		0.390 (0.0135)
Nono 15	K		C3, C7, D3, D7, E7	0.380 (0.0132)
Nano 15			C2, D2	0.046 (0.0016)
Nano 20			C3, C7, D3, D7, E7	0.080 (0.0028)
			C2, D2	0.041 (0.0014)

5 Operating conditions

5.1 Location and position of installation

Rotamass Coriolis flow meters can be mounted horizontally, vertically and at an incline. The measuring tubes should be completely filled with the fluid during flow measurement as accumulations of air or formation of gas bubbles in the measuring tube may result in errors in measurement. Straight pipe runs at inlet or outlet are usually not required.

Avoid the following installation locations and positions:

- Measuring tubes as highest point in piping when measuring liquids
- · Measuring tubes as lowest point in piping when measuring gases
- Immediately in front of a free pipe outlet in a downpipe
- Lateral positions

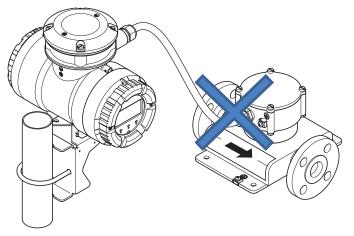


Fig. 11: Installation position to be avoided: Flow meter in sideways position

5.1.1 Sensor installation position

 Installation position
 Fluid
 Description

 Ind
 Horizontal, measuring tubes at bottom
 Image: Construction of the second second

Sensor installation position as a function of the fluid

	E1 · 1	
Installation position	Fluid	Description
Horizontal, measuring tubes at top	Gas	The measuring tubes are oriented toward the top. Accumulation of liquid, such as condensate is avoided.
Vertical, direction of flow towards the top (recommended)	Liquid/gas	The sensor is installed on a pipe with the direction of flow towards the top. Accumulation of gas bubbles or solids is avoided. This position allows for complete self-draining of the measuring tubes.

 \bigcirc

5.2 Installation instructions

The following instructions for installation must be observed:

- 1. Protect the flow meter from direct sun irradiation in order to avoid exceeding the maximum allowed temperature of the transmitter.
- 2. In case of installing two sensors of the same kind back-to-back redundantly, use a customized design and contact the responsible Yokogawa sales organization.
- 3. Avoid installation locations susceptible to cavitation, such as immediately behind a control valve.
- 4. In case that the fluid temperatures deviate approx. 80 °C from the ambient temperature, insulating the sensor is recommended in order to avoid injuries as well as to maintain utmost accuracy, see *Insulation and heat tracing* [▶ 33].
- 5. Avoid installation directly behind rotary and gear pumps to prevent fluctuations in pressure from interfering with the resonance frequency of the Rotamass measuring tubes.
- In case of remote installation: When installing the connecting cable between sensor and transmitter, keep the cable temperature above -10 °C (14 °F) to prevent cable damage from the installation stresses.

5.3 Process conditions

The pressure and temperature ratings presented in this section represent the design values for the devices. For individual applications (e.g. marine applications with option MC_) further limitations may apply according to the respective applicable regulations. For details see chapter *Marine Approval* [▶ 114].

5.3.1 Process fluid temperature range

(i) Allowed process fluid and ambient temperature ranges in hazardous areas depend on classifications defined by applications, refer to *Temperature specification in hazardous areas* [> 38].

For Rotamass Nano the following process fluid temperature ranges are available:

Temperature range	Model code position 6	Model code position 8	Process fluid temperature in °C (°F)	Design type	Model code position 10
	HS4	0	-10 – 140 (14 – 284)	Remote type	A, B, E, F, J, K
Standard	HS8		-10 – 140 (14 – 284)		
	Others		-50 – 150 (-58 – 302)		
Mid-range	not relevant	2	-50 – 260 (-58 – 500)		B, F, K

5.3.2 Density

Meter size	Measuring range of density		
Nano 06			
Nano 08			
Nano 10	0 – 5 kg/l (0 – 310 lb/ft³)		
Nano 15			
Nano 20			

Rather than being measured directly, density of gas is usually calculated using its reference density, process fluid temperature and process pressure.

5.3.3 Pressure

The maximum allowed process pressure depends on the selected process connection and its surface temperature.

The given process connection temperature and process pressure ranges are calculated and approved without corrosion or erosion effects.

The following diagrams shows the process pressure as a function of process connection temperature as well as the process connection used (type and size of process connection).

ASME class 150 JPI class 150

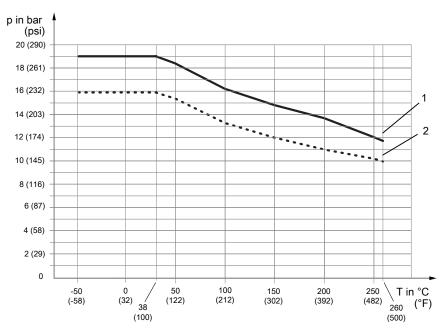


Fig. 12: Allowed process pressure as a function of process connection temperature

- 1 Process connection suitable for ASME B16.5 class 150
- 2 Process connection suitable for JPI class 150 and heat tracing connection suitable for ASME B16.5 class 150

ASME class 300 EN PN40 JPI class 300

ASME class 600

JPI class 600

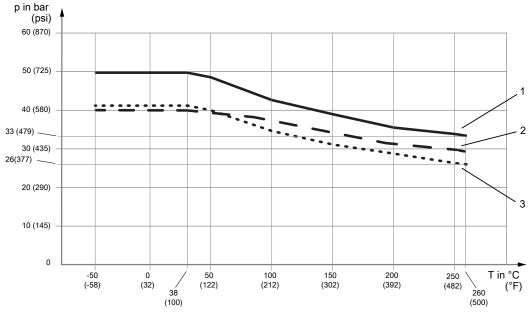


Fig. 13: Allowed process pressure as a function of process connection temperature

- 1 Process connection suitable for ASME B16.5 class 300
- 2 Process and heat tracing connection suitable for EN 1092-1 PN40
- 3 Process connection suitable for JPI class 300 and process and heat tracing connection for ASME B16.5 class 300

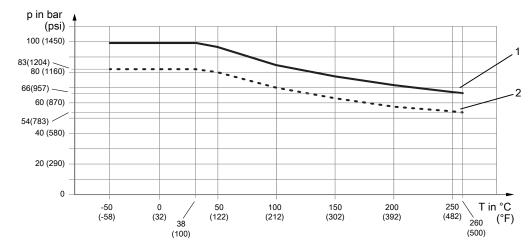


Fig. 14: Allowed process pressure as a function of process connection temperature

- 1 Process connection suitable for ASME B16.5 class 600
- 2 Process connection suitable for JPI class 600

1

2

Nano Operating conditions

EN PN100

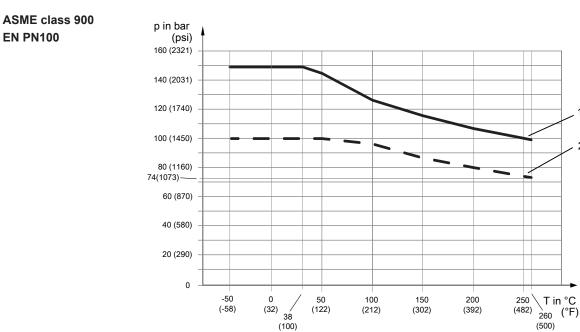
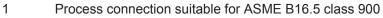



Fig. 15: Allowed process pressure as a function of process connection temperature

Process connection suitable for EN 1092-1 PN100

ASME class 1500 suitable for flange **ASME B16.5**

2

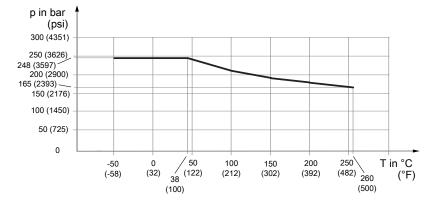


Fig. 16: Allowed process pressure as a function of process connection temperature

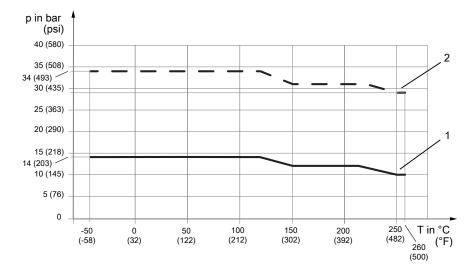
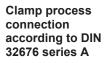



Fig. 17: Allowed process pressure as a function of process connection temperature

1 Process connection suitable for JIS B 2220 10K

2 Process connection suitable for JIS B 2220 20K

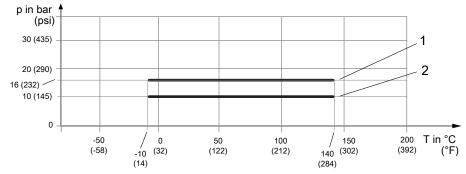


Fig. 18: Allowed process pressure as a function of process connection temperature

- 1 Clamp process connection suitable for DIN 32676 series A up to DN50
- 2 Clamp process connection suitable for DIN 32676 series A above DN50

Nano Operating conditions

Process connection

with internal thread

G and NPT

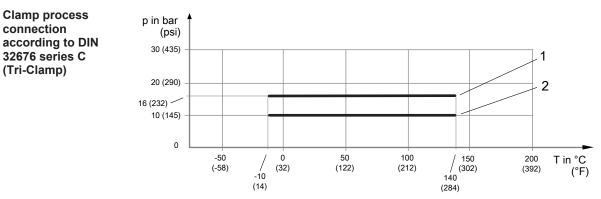
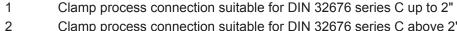



Fig. 19: Allowed process pressure as a function of process connection temperature

Clamp process connection suitable for DIN 32676 series C above 2"

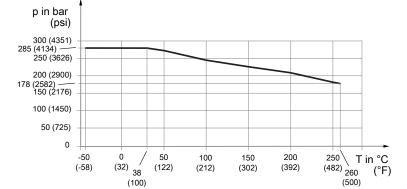


Fig. 20: Allowed process pressure as a function of process connection temperature

5.3.4 Mass flow

For liquids the preferred measuring range is 10 % - 80 % of Q_{nom}, see Mass flow [> 13].

For gases, as a result of low gas density, the maximum mass flow Q_{max} is usually not reached in gas measurements. In general, the maximum flow velocity should not exceed 33 % of the sonic velocity of the fluid.

5.3.5 Effect of temperature on accuracy

Effect of process fluid temperature

The specified accuracy of the density measurement (see Mass flow and density accuracy (> 101]) applies at calibration conditions and may deteriorate if process fluid temperatures deviate from those conditions. The effect of temperature is minimal for the product version with model code position 9, value ...2.

For further description of process fluid temperature effect, see Process fluid temperature effect [> 24].

(i)

5.3.6 Insulation and heat tracing

In case that the fluid temperature deviates more than 80 °C (176 °F) from the ambient temperature, insulating the sensor is recommended to avoid negative effects from temperature fluctuations on accuracy.

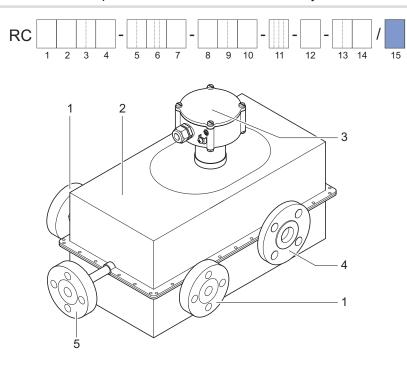


Fig. 21: Configuration of Rotamass with insulation and heat tracing

- 1 Heating tracing connection
- 4 Process connection

2 Insulation

- 5 Ventilation
- 3 Sensor terminal box

Description	Options
Insulation	T10
InsulationHeat tracing without ventilation	T21, T22, T26
InsulationHeat tracing with ventilation	T31, T32, T36

For details about the ordering information see chapter under the same heading *Insulation* and heat tracing [> 109] in the model code description.

If the sensor is insulated subsequently, the following must be noted:

- Do not insulate sensor terminal box.
- Do not expose transmitters to ambient temperatures exceeding 60 °C (140 °F).
- The preferred insulation is 60 mm (2.36 inch) thick with a heat transfer coefficient of 0.4 W/m² K (0.07 Btu/ ft² °F).

Temperature range	Model code position 8	Maximum temperature range of heat carrier in °C (°F)
Standard	0	0 - 150 (32 - 302)
Mid-range	2	0 - 200 (32 - 392)

Overview of device options for insulation and heat tracing for remote type

Pressure ratings of heat tracing are defined based on heat tracing connection, refer to *Pressure* [> 28].

Electrical heating can be provided subsequently. Electromagnetic insulation is required in case the heating device is controlled by phase-fired control or pulse train.

 $(\mathbf{\hat{0}})$

In hazardous areas, subsequent application of insulation, heating jacket or heating strips is not permitted.

5.3.7 Secondary containment

Some applications or environment conditions require secondary containment retaining the process pressure for increased safety. All Rotamass Total Insight have a secondary containment filled with inert gas. The rupture pressure typical values of the secondary housing are defined in the table below.

Typical rupture pressure

е	Rupture pressure in bar (psi)				
	Nano 06	Nano 08	Nano 10	Nano 15	Nano 20
			65 (942)		

5.4 Ambient conditions

Rotamass Total Insight can be used at demanding ambient conditions.

In doing so, the following specifications must be taken into account:

As ambient temperature is intend the air surrounding the device.

Allowed ambient and storage temperature of Rotamass Total Insight depends on the below components and their own temperature limits:

- Sensor
- Transmitter
- Connecting cable between sensor and transmitter

Maximum ambient temperature range ¹⁾		
with standard cable	Sensor ²⁾ :	-50 – 80 °C (-58 – 176 °F)
(option L):	Transmitter:	-40 - 60 °C (-40 - 140 °F)
with fire retardant cable ³⁾	Sensor ²⁾ :	-35 – 80 °C (-31 – 176 °F)
(option Y):	Transmitter:	-35 – 60 °C (-31 – 140 °F)

¹⁾ If the device is operating outdoors be sure that the solar irradiation does not increase the surface temperature of the transmitter higher than the allowed maximum ambient temperature. Transmitter display has limited legibility below -20 °C (-4 °F)

²⁾ Check derating for high fluid temperature, see *Process fluid temperature range* [> 27], *Process conditions* [> 27] and *Allowed ambient temperature for sensor* [> 36]

³⁾ Lower temperature specification valid for fixed installation only

Storage temperature

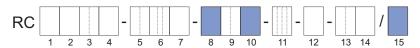
Ambient temperature

Maximum storage temperature range		
with standard cable	Sensor:	-50 – 80 °C (-58 – 176 °F)
(option L):	Transmitter:	-40 – 60 °C (-40 – 140 °F)
with fire retardant cable	Sensor:	-35 – 80 °C (-31 – 176 °F)
(option Y):	Transmitter:	-35 – 60 °C (-31 – 140 °F)

Further ambient conditions

Ranges and specifications	
Relative humidity	0 – 95 %
IP code	IP66/67 for transmitters and sensors when using the appropriate cable glands
Allowable pollution degree in surrounding area acc. EN 61010-1	4 (in operation)
Vibration resistance acc. IEC 60068-2-6	Transmitter: 10 – 500 Hz, 1g
 Electromagnetic compatibility (EMC) IEC/EN 61326-1, Table 2 IEC/EN 61326-2-3 NAMUR NE 21 recommendation DNVGL-CG-0339, chapter 14 	
 This includes Surge immunity acc.: EN 61000-4-5 for lightning protection Emission acc.: IEC/EN 61000-3-2, Class A IEC/EN 61000-3-3, Class A NAMUR NE 21 recommendation 	Immunity assessment criterion: The output signal fluctuation is within ±1% of the output span.
 – DNVGL-CG-0339, chapter 14 Maximum altitude 	2000 m (6600 ft) above mean sea level

Overvoltage category acc.: IEC/EN 61010-1

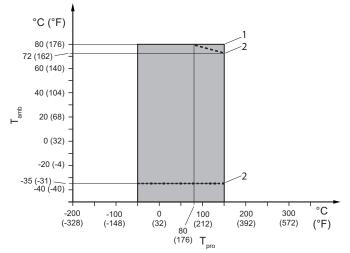


5.4.1 Allowed ambient temperature for sensor

As ambient temperature is intended the temperature of the air surrounding the device. If the device is operating outdoors be sure that solar irradiation does not increase the surface temperature higher than the allowed maximum ambient temperature.

The allowed ambient temperature depends on the following product properties:

- Process fluid temperature, see Process fluid temperature range [> 27]
- Connecting cable type (options L___ and Y___)

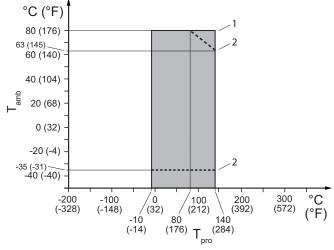


The allowed combinations of process fluid and ambient temperature for the sensor are illustrated as gray areas in the diagrams below.

Allowed process fluid and ambient temperature ranges in hazardous areas depend on classifications defined by applications, refer to *Temperature specification in hazardous areas* [> 38].

Temperature specification Standard, remote type

 (\mathbf{i})


Fig. 22: Allowed process fluid and ambient temperatures, remote type (except process connection type HS4 and HS8)

T_{amb} Ambient temperature

T_{pro} Process fluid temperature

- 1 Standard cable option L___
- 2 Limitation for fire retardant cable option Y____

Fig. 23: Allowed process fluid and ambient temperatures, remote type for process connection type HS4 and HS8

- 1 Standard cable option L___
- 2 Limitation for fire retardant cable option Y___

Temperature specification Mid-range, remote type

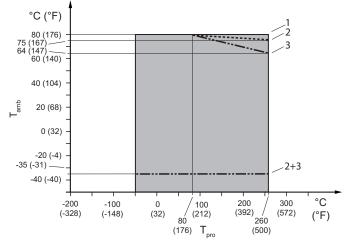


Fig. 24: Allowed process fluid and ambient temperatures

- 1 Standard cable option L___
- 2 Limitation for fire retardant cable option Y___ without option T__
- 3 Limitation for fire retardant cable option Y___ with option T__

5.4.2 Temperature specification in hazardous areas

The maximum ambient and process fluid temperatures depending on explosion groups and temperature classes can be determined via the model code or via the model code together with the Ex code (see the corresponding Explosion Proof Type Manual).

Note: The maximum process fluid temperature could be further restricted due to

Model code: Tł Pos. 2: N Pos. 8: 0 R Pos. 10: A, B, E, F, J, K

Pos. 11: _F21, _F22, FF11, FF12

Ex code: -

process connection type see Allowed ambient temperature for sensor [> 36].

	The	follo	owir	ng f	igu	re	shc	ows	the	e r	elev	/an	t po	sitions	s of th	ne mo	bdel	code	:
	RC]-[-				-	-	-		/	
,		1	2	3	4		5	6	7		8	9	10	11	12	13	14	15	

Tab. 4: Temperature classification

Temperature class	Maximum ambie in °C	ent temperature ; (°F)	Maximum fluid temperature in °C (°F)
	Option L	Option Y	
Т6	65 (149)	65 (149)	65 (149)
Τ5	75 (167)	75 (167)	90 (194)
T4	80 (176)	74 (165)	130 (266)
Т3	80 (176)	72 (161)	150 (302)
T2	80 (176)	72 (161)	150 (302)
T1	80 (176)	72 (161)	150 (302)

Model code:

Pos. 2: N Pos. 8: 2 Pos. 10: B, F, K Pos. 11: _F21, _F22, FF11, FF12 Ex code: - Option Y___ not with model code pos. 11: FF11, FF12

The following figure shows the relevant positions of the model code:

Tab. 5: Temperature classification

Temperature class	Maximu	m ambient temp in °C (°F)	perature	Maximum fluid tempera- ture
	Option L	Option Y without option T	Option Y with option T	in °C (°F)
Т6	65 (149)	65 (149)	65 (149)	65 (149)
Т5	75 (167)	75 (167)	75 (167)	90 (194)
T4	80 (176)	76 (168)	75 (167)	130 (266)
Т3	80 (176)	75 (167)	71 (159)	180 (356)
T2	80 (176)	73 (163)	64 (147)	260 (500)
T1	80 (176)	73 (163)	64 (147)	260 (500)

Option Y___ not with model code pos. 11: FF11, FF12

0

0

6 Mechanical specification

6.1 Design

The Rotamass Nano flow meter is available with two neck design versions:

- Standard neck
- Long neck

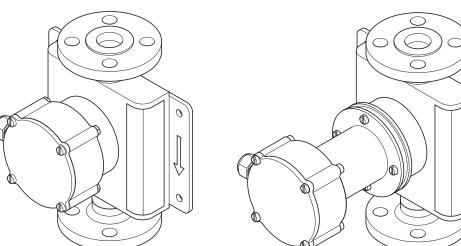
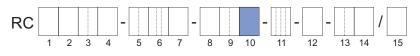
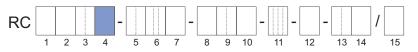



Fig. 25: Sensor with standard and long neck

Design version	Process fluid temperature range	Model code position 10	
Standard neck	Standard	A, E, J	
	Standard	рги	
Long neck	Mid-range	B, F, K	

If insulation (e.g. device option / T__) is planned, it is mandatory to use the remote type with long neck.


The design influences the temperature specification for Ex-approved Rotamass, see Explosion Proof Type Manual (IM 01U10X__-00EN-R).

6.2 Material

6.2.1 Material wetted parts

For Rotamass Nano, the measuring tubes are available in a corrosion-resistant nickel alloy with process connections made of stainless steel alloy.

	Model code position 4
Measuring tubes made of nickel alloy C-22/2.4602, process connections of stainless steel alloy 1.4404/316L	K

6.2.2 Non-wetted parts

Housing material of sensor and transmitter are specified via model code position 7 and position 10.

Housing material	Model code position 7
Stainless steel 1.4301/304, 1.4404/316L	0
Stainless steel 1.4404/316L	1

Transmitter housing, coating and bracket material

Sensor housing

material

The transmitter housing is available with different coatings:

- Urethane-cured polyester powder coating
- Corrosion protection coating

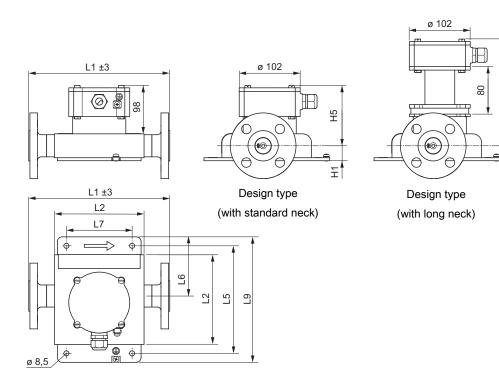
Standard coating

Three-layer coating with high chemical resistance (polyurethane coating on two layers of epoxy coating)

RC					-			-					-		/	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

Housing material	Coating	Model code position 10	Bracket material	
Aluminum	Standard coating	A, B	Stainlage steel	
Al-Si10Mg(Fe)	Corrosion protection coating	E, F	Stainless steel 1.4301/304	
Stainless Steel CF8M		J, K	Stainless steel 1.4404/316L	

See also Design and housing [102].


Nameplate

For stainless steel transmitter the nameplates are made of stainless steel 1.4404/316L. Aluminum transmitter nameplates are made of foil.

In case of sensor housing material stainless steel 1.4404/316L (Model code position 7, value 1), nameplates of sensor are made of stainless steel 1.4404/316L. With other sensor housing material and with process fluid temperature range standard the sensor nameplates are made of foil, for other temperature ranges the nameplates are made of stainless steel 1.4404/316L.

Hб

6.3 Process connections, dimensions and weights of sensor

Fig. 26: Dimensions in mm

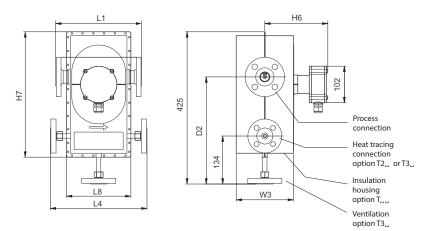


Fig. 27: Dimensions in mm: version with insulation housing

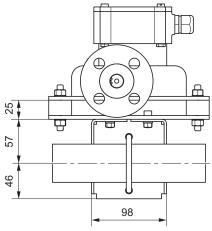
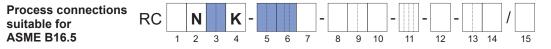


Fig. 28: Dimensions in mm: fixing device option PD for Nano

Meter size	L2	L4	L5	L6	L7	L8	L9			
		in mm (inch)								
Nano 06	150	270	180	111	110	180	210			
	(5.9)	(10.6)	(7.1)	(4.4)	(4.3)	(7.1)	(8.3)			
Nano 08	150	270	180	111	110	180	210			
	(5.9)	(10.6)	(7.1)	(4.4)	(4.3)	(7.1)	(8.3)			
Nano 10	150	270	180	99	110	180	210			
	(5.9)	(10.6)	(7.1)	(3.9)	(4.3)	(7.1)	(8.3)			
Nano 15	150	270	180	89	110	180	210			
	(5.9)	(10.6)	(7.1)	(3.5)	(4.3)	(7.1)	(8.3)			
Nano 20	150	270	180	55	110	180	210			
	(5.9)	(10.6)	(7.1)	(2.2)	(4.3)	(7.1)	(8.3)			

Tab. 7: Dim	nensions v	without	length L	_1
-------------	------------	---------	----------	----


Meter size	H1	H5	H6	H7	W3	D1	D2				
		in mm (inch)									
Nano 06	25	101	176	350	160	165	299				
	(1)	(4)	(6.9)	(13.8)	(6.3)	(6.5)	(11.8)				
Nano 08	25	101	176	350	160	165	299				
	(1)	(4)	(6.9)	(13.8)	(6.3)	(6.5)	(11.8)				
Nano 10	25	101	176	350	160	165	299				
	(1)	(4)	(6.9)	(13.8)	(6.3)	(6.5)	(11.8)				
Nano 15	25	101	176	350	160	165	299				
	(1)	(4)	(6.9)	(13.8)	(6.3)	(6.5)	(11.8)				
Nano 20	25	101	176	350	160	165	299				
	(1)	(4)	(6.9)	(13.8)	(6.3)	(6.5)	(11.8)				

Overall length L1 and weight

The overall length of the sensor depends on the selected process connection (type and size of flange). The following tables list the overall length and weight (without insulation or heat tracing) as functions of the individual process connection.

The weights in the tables are for the remote type with standard neck. Additional weight for the remote type with long neck: 1 kg (2.2 lb).

Tab. 8: Overall length L1 and weight of sensor (process connections: ASME)

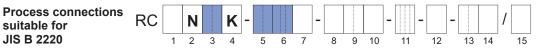
Process connections	c	odel ode sition	Nan	o 06	Nan	o 08	Nan	o 10	Nan	o 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
ASME ½" class 150, raised face (RF)		BA1	240 (9.4)	6.2 (14)								
ASME ½" class 300, raised face (RF)		BA2	240 (9.4)	6.6 (15)								
ASME ½" class 600, raised face (RF)		BA4	250 (9.8)	6.8 (15)								
ASME ½" class 600, ring joint (RJ)	15	CA4	250 (9.8)	6.8 (15)								
ASME ½" class 900, raised face (RF)		BA5	270 (10.6)	8.8 (19)								
ASME ½" class 900, ring joint (RJ)		CA5	270 (10.6)	8.9 (20)								
ASME ½" class 1500, raised face (RF)		BA6	270 (10.6)	8.8 (19)								
ASME ½" class 1500, ring joint (RJ)		CA6	270 (10.6)	8.9 (20)								
ASME 1" class 150, raised face (RF)		BA1	_	-	240 (9.4)	7 (15)	240 (9.4)	7 (15)	240 (9.4)	7 (15)	240 (9.4)	7 (15)
ASME 1" class 300, raised face (RF)		BA2	-	-	240 (9.4)	8 (18)	240 (9.4)	8 (18)	240 (9.4)	8 (18)	240 (9.4)	8 (18)
ASME 1" class 600, raised face (RF)		BA4	_	_	260 (10.2)	8.4 (19)	260 (10.2)	8.4 (19)	260 (10.2)	8.4 (19)	260 (10.2)	8.4 (19)
ASME 1" class 600, ring joint (RJ)		CA4	_	_	260 (10.2)	8.5 (19)	260 (10.2)	8.5 (19)	260 (10.2)	8.5 (19)	260 (10.2)	8.5 (19)
ASME 1" class 900, raised face (RF)	25	BA5	_	-	320 (12.6)	12.7 (28)	320 (12.6)	12.7 (28)	320 (12.6)	12.7 (28)	320 (12.6)	12.7 (28)
ASME 1" class 900, ring joint (RJ)		CA5	_	_	320 (12.6)	12.8 (28)	320 (12.6)	12.8 (28)	320 (12.6)	12.8 (28)	320 (12.6)	12.8 (28)
ASME 1" class 1500, raised face (RF)		BA6	_	_	320 (12.6)	12.7 (28)	320 (12.6)	12.7 (28)	320 (12.6)	12.7 (28)	320 (12.6)	12.7 (28)
ASME 1" class 1500, ring joint (RJ)		CA6	_	-	320 (12.6)	12.8 (28)	320 (12.6)	12.8 (28)	320 (12.6)	12.8 (28)	320 (12.6)	12.8 (28)

Nano Mechanical specification

Process connections	С	odel ode sition	Nan	o 06	Nan	0 08	Nan	io 10	Nan	io 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
ASME 1½" class 150, raised face (RF)		BA1	_	_	250 (9.8)	8 (18)	250 (9.8)	8 (18)	250 (9.8)	8 (18)	250 (9.8)	8 (18)
ASME 1½" class 300, raised face (RF)		BA2	_	_	250 (9.8)	10.3 (23)	250 (9.8)	10.3 (23)	250 (9.8)	10.3 (23)	250 (9.8)	10.3 (23)
ASME 1½" class 600, raised face (RF)		BA4	_	_	270 (10.6)	11.4 (25)	270 (10.6)	11.4 (25)	270 (10.6)	11.4 (25)	270 (10.6)	11.4 (25)
ASME 1½" class 600, ring joint (RJ)	40	CA4	-	_	270 (10.6)	11.5 (25)	270 (10.6)	11.5 (25)	270 (10.6)	11.5 (25)	270 (10.6)	11.5 (25)
ASME 1½" class 900, raised face (RF)		BA5	_	_	340 (13.4)	17.5 (39)	340 (13.4)	17.5 (39)	340 (13.4)	17.5 (39)	340 (13.4)	17.5 (39)
ASME 1½" class 900, ring joint (RJ)		CA5	-	_	340 (13.4)	17.7 (39)	340 (13.4)	17.7 (39)	340 (13.4)	17.7 (39)	340 (13.4)	17.7 (39)
ASME 1½" class 1500, raised face (RF)		BA6	_	_	340 (13.4)	17.5 (39)	340 (13.4)	17.5 (39)	340 (13.4)	17.5 (39)	340 (13.4)	17.5 (39)
ASME 1½" class 1500, ring joint (RJ)		CA6	_	_	340 (13.4)	17.7 (39)	340 (13.4)	17.7 (39)	340 (13.4)	17.7 (39)	340 (13.4)	17.7 (39)

Meaning of "--": not available

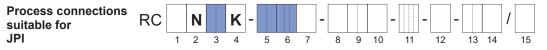
Tab. 9: Overall length L1 and weight of sensor (process connections: EN)


Process connections	СО	del de ition	Nan	o 06	Nan	o 08	Nan	o 10	Nan	o 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (Ib)	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (lb)
EN DN15 PN40, type B1, raised face (RF)		BD4	240 (9.4)	6.8 (15)								
EN DN15 PN40, type D, with groove		GD4	240 (9.4)	6.6 (15)								
EN DN15 PN40, type E, with spigot		ED4	240 (9.4)	6.5 (14)								
EN DN15 PN40, type F, with recess	15	FD4	240 (9.4)	6.7 (15)								
EN DN15 PN100, type B1, raised face (RF)	15	BD6	250 (9.8)	7.6 (17)								
EN DN15 PN100, type D, with groove		GD6	250 (9.8)	13.6 (30)								
EN DN15 PN100, type E, with spigot		ED6	250 (9.8)	7.3 (16)								
EN DN15 PN100, type F, with recess		FD6	250 (9.8)	7.5 (17)								
EN DN25 PN40, type B1, raised face (RF)		BD4	_	_	240 (9.4)	7.7 (17)	240 (9.4)	7.7 (17)	240 (9.4)	7.7 (17)	240 (9.4)	7.7 (17)
EN DN25 PN40, type D, with groove		GD4	_	_	240 (9.4)	7.7 (17)	240 (9.4)	7.7 (17)	240 (9.4)	7.7 (17)	240 (9.4)	7.7 (17)
EN DN25 PN40, type E, with spigot		ED4	_	_	240 (9.4)	7.4 (16)	240 (9.4)	7.4 (16)	240 (9.4)	7.4 (16)	240 (9.4)	7.4 (16)
EN DN25 PN40, type F, with recess	25	FD4	_	_	240 (9.4)	7.6 (17)	240 (9.4)	7.6 (17)	240 (9.4)	7.6 (17)	240 (9.4)	7.6 (17)
EN DN25 PN100, type B1, raised face (RF)	20	BD6	_	_	260 (10.2)	10.3 (23)	260 (10.2)	10.3 (23)	260 (10.2)	10.3 (23)	260 (10.2)	10.3 (23)
EN DN25 PN100, type D, with groove		GD6	_	_	260 (10.2)	10.2 (22)	260 (10.2)	10.2 (22)	260 (10.2)	10.2 (22)	260 (10.2)	10.2 (22)
EN DN25 PN100, type E, with spigot		ED6	_	_	260 (10.2)	9.7 (21)	260 (10.2)	9.7 (21)	260 (10.2)	9.7 (21)	260 (10.2)	9.7 (21)
EN DN25 PN100, type F, with recess		FD6	_	_	260 (10.2)	10.1 (22)	260 (10.2)	10.1 (22)	260 (10.2)	10.1 (22)	260 (10.2)	10.1 (22)

Nano Mechanical specification

Process connections	CO	del de ition	Nan	o 06	Nan	o 08	Nan	io 10	Nan	o 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
EN DN40 PN40, type B1, raised face (RF)		BD4	_	_	240 (9.4)	9.2 (20)	240 (9.4)	9.2 (20)	240 (9.4)	9.2 (20)	240 (9.4)	9.2 (20)
EN DN40 PN40, type D, with groove		GD4	_	_	240 (9.4)	9.1 (20)	240 (9.4)	9.1 (20)	240 (9.4)	9.1 (20)	240 (9.4)	9.1 (20)
EN DN40 PN40, type E, with spigot		ED4	_	-	240 (9.4)	8.8 (19)	240 (9.4)	8.8 (19)	240 (9.4)	8.8 (19)	240 (9.4)	8.8 (19)
EN DN40 PN40, type F, with recess	40	FD4	_	_	240 (9.4)	9 (20)	240 (9.4)	9 (20)	240 (9.4)	9 (20)	240 (9.4)	9 (20)
EN DN40 PN100, type B1, raised face (RF)	40	BD6	_	_	320 (12.6)	13.7 (30)	320 (12.6)	13.7 (30)	320 (12.6)	13.7 (30)	320 (12.6)	13.7 (30)
EN DN40 PN100, type D, with groove		GD6	_	_	320 (12.6)	13.6 (30)	320 (12.6)	13.6 (30)	320 (12.6)	13.6 (30)	320 (12.6)	13.6 (30)
EN DN40 PN100, type E, with spigot		ED6	_	_	320 (12.6)	13.2 (29)	320 (12.6)	13.2 (29)	320 (12.6)	13.2 (29)	320 (12.6)	13.2 (29)
EN DN40 PN100, type F, with recess		FD6	_	_	320 (12.6)	13.5 (13.5)	13.5 (30)	320 (12.6)	13.5 (30)	320 (12.6)	13.5 (30)	320 (12.6)

Meaning of "-": not available



Tab. 10: Overall length L1 and weight of sensor (process connections: JIS)

Process connections	CO	del de ition	Nan	0 06	Nar	10 08	Nar	io 10	Nan	io 15	Nar	10 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
JIS DN15 10K	15	BJ1	240 (9.4)	6.5 (14)								
JIS DN15 20K	15	BJ2	240 (9.4)	6.7 (15)								
JIS DN25 10K	25	BJ1	_	_	240 (9.4)	7.6 (17)	240 (9.4)	7.6 (17)	240 (9.4)	7.6 (17)	240 (9.4)	7.6 (17)
JIS DN25 20K	20	BJ2	-	_	240 (9.4)	8 (18)	240 (9.4)	8 (18)	240 (9.4)	8 (18)	240 (9.4)	8 (18)
JIS DN40 10K	40	BJ1	_	_	240 (9.4)	8.4 (19)	240 (9.4)	8.4 (19)	240 (9.4)	8.4 (19)	240 (9.4)	8.4 (19)
JIS DN40 20K	40	BJ2	_	_	240 (9.4)	8.8 (19)	240 (9.4)	8.8 (19)	240 (9.4)	8.8 (19)	240 (9.4)	8.8 (19)

Meaning of "--": not available

Tab. 11: Overall length L1 and weight of sensor (process connections: JPI)

Process connections		del pos.	Nano 0	6	Nano 0	8	Nano 1	0	Nano 1	5	Nano 2	0
	5	6	L1 in mm (inch)	Weight in kg (lb)								
JPI 1⁄2" class 150		BP1	240 (9.4)	6.1 (14)								
JPI ½" class 300	15	BP2	240 (9.4)	6.6 (15)								
JPI ½" class 600		BP4	250 (9.8)	6.8 (15)								
JPI 1" class 150		BP1	_	_	240 (9.4)	6.9 (15)	240 (9.4)	6.9 (15)	240 (9.4)	6.9 (15)	240 (9.4)	6.9 (15)
JPI 1" class 300	25	BP2	_	_	240 (9.4)	8 (18)	240 (9.4)	8 (18)	240 (9.4)	8 (18)	240 (9.4)	8 (18)
JPI 1" class 600		BP4	_	_	260 (10.2)	8.4 (18)	260 (10.2)	8.4 (18)	260 (10.2)	8.4 (18)	260 (10.2)	8.4 (18)
JPI 1½" class 150		BP1	_	_	250 (9.8)	8.1 (18)	250 (9.8)	8.1 (18)	250 (9.8)	8.1 (18)	250 (9.8)	8.1 (18)
JPI 11/2" class 300	40	BP2	_	_	250 (9.8)	10.3 (23)	250 (9.8)	10.3 (23)	250 (9.8)	10.3 (23)	250 (9.8)	10.3 (23)
JPI 11/2" class 600		BP4	_	_	270 (10.6)	11.4 (25)	270 (10.6)	11.4 (25)	270 (10.6)	11.4 (25)	270 (10.6)	11.4 (25)

Meaning of "--": not available

Nano

G

Mechanical specification

Process connections with internal thread	RC		Ν		κ	-			-				-	-	-		/	
NPT		1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	5

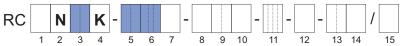
Tab. 12: Overall length L1 and weight of sensor (process connections: NPT thread)

CO	de	Nan	o 06	Nan	08 08	Nan	o 10	Nan	io 15	Nan	o 20
5	6	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (lb)	L1 in mm (inch)	Weight in kg (lb)
06		260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)
08	тто	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)
15	119	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)	260 (10.2)	5.6 (12)
20		260 (10.2)	5.5 (12)	260 (10.2)	5.5 (12)	260 (10.2)	5.5 (12)	260 (10.2)	5.5 (12)	260 (10.2)	5.5 (12)
	cc pos 5 06 08 15	06 08 15	code position L1 in mm (inch) 5 6 260 (10.2) 06 260 (10.2) 260 (10.2) 15 260 (10.2) 260 (10.2) 20 260	code position L1 Weight in kg (lb) 5 6 L1 in mm (inch) Weight in kg (lb) 06 260 5.6 (10.2) (12) 08 TT9 260 5.6 (10.2) (12) 15 260 5.6 (10.2) (12) 260 5.6 (10.2) (12) 260 5.6 (10.2) (12) 260 5.6 (12) 260 5.6 (12) 260 5.6 (12) 260 5.6 (12)	code position L1 Weight in mm (inch) L1 in mm (lb) Weight in mm (inch) 5 6 L1 in mm (inch) Weight in kg (lb) L1 in mm (inch) 06 260 (10.2) 5.6 (10.2) 260 (10.2) 5.6 (10.2) 260 (10.2) 08 TT9 260 (10.2) 5.6 (10.2) 260 (10.2) 260 (10.2) 260 (10.2) 15 260 5.6 (10.2) 260 5.6 (10.2) 260 20 260 5.6 (10.2) 260 5.6 260	code position L1 Weight in mm (inch) L1 Weight in kg (lb) L1 Weight in kg (lb) 5 6 L1 Weight in kg (lb) In mm (inch) Weight in kg (lb) In mm (inch) Weight in kg (lb) 06 260 5.6 260 5.6 08 260 5.6 260 5.6 15 260 5.6 260 5.6 20 260 5.6 260 5.6 12 260 5.6 260 5.6 (10.2) (12) (10.2) (12) 260 5.6 260 5.6 (10.2) (12) (10.2) (12) 260 5.5 260 5.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	code position L1 Weight in mm (inch) L1 Weight in mm (inch) L1 Weight in mm (inch) L1 Weight in kg (lb) L1 L	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Tab. 13: Overall length L1 and weight of sensor (process connections: G thread)

Process connections	CO	del de ition	Nan	o 06	Nan	o 08	Nan	o 10	Nan	o 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
G ¼"	06		260 (10.2)	5.6 (12)								
G ¾"	08	TG9	260 (10.2)	5.6 (12)								
G ½"	15	169	260 (10.2)	5.6 (12)								
G ¾"	20		260 (10.2)	5.5 (12)								

according to DIN 32676 series A


Clamp process

connections

Tab. 14: Overall length L1 and weight of sensor (process connections: DIN 32676 series A clamp)

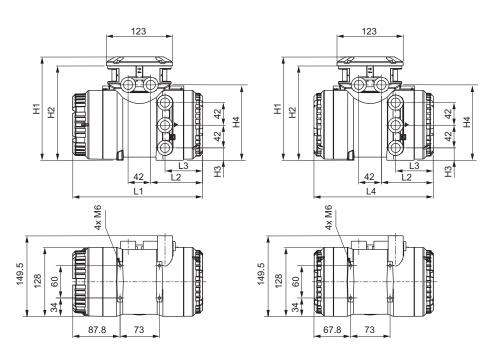
Process connections	CO	del de ition	Nan	0 06	Nan	0 08	Nan	io 10	Nan	o 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
DIN 32676 series A DN15	15		240 (9.4)	5.3 (12)								
DIN 32676 series A DN25	25	HS4	-	_	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)
DIN 32676 series A DN40	40	-	-	_	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)

Meaning of "--": not available

connections according to DIN 32676 series C (Tri-Clamp)

Clamp process

Tab. 15: Overall length L1 and weight of sensor (process connections: DIN 32676 series C Tri-Clamp)


Process connections	CO	del de ition	Nan	o 06	Nan	0 08	Nan	o 10	Nan	o 15	Nan	o 20
	5	6	L1 in mm (inch)	Weight in kg (lb)								
DIN 32676 series C ¹ ⁄ ₂ "	15		240 (9.4)	5.3 (12)								
DIN 32676 series C 1"	25	HS8	_	_	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)
DIN 32676 series C 11⁄2"	40		_	_	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)	240 (9.4)	5.4 (12)

Meaning of "--": not available

6.4 Transmitter dimensions and weights

Transmitter dimensions

Fig. 29: Dimensions of transmitter in mm (left: transmitter with display, right: transmitter without display)

Tab. 16: Overall length L1 - L4 and height H1 - H4 of transmitter (material: stainless steel, aluminum)

Material	L1	L2	L3	L4	H1	H2	H3	H4
	in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm
	(inch)	(inch)	(inch)	(inch)	(inch)	(inch)	(inch)	(inch)
Stainless steel	255.5	110.5	69	235	201	184	24	150.5
	(10.06)	(4.35)	(2.72)	(9.25)	(7.91)	(7.24)	(0.94)	(5.93)
Alu-	241.5	96.5	70	221	192	175	23	140
minum	(9.51)	(3.8)	(2.76)	(8.7)	(7.56)	(6.89)	(0.91)	(5.51)

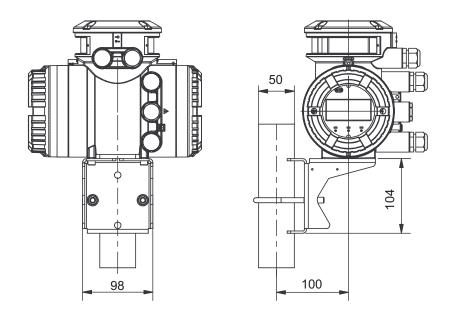
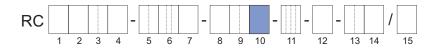



Fig. 30: Dimensions of transmitter in mm, attached by sheet metal console (bracket)

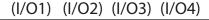
Transmitter weights	Model code (pos. 10)	Design type	Housing material of transmitter	Weight in kg (lb)
	A, B, E, F	Remote	Aluminum	4.2 (9.3)
J, K	J, K	Remote	Stainless steel	12.5 (27.6)

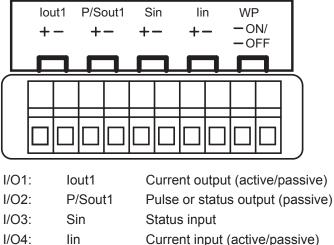
7 Transmitter specification

Overview		Transmitter		
of functional scope of the Rotamass	Functional scope	Essential	Ultimate	
transmitter		Essential 0 0 0 0 0 0 0 0 0 0 0 0 0	Ultimate 0 0 0 0 0	
	Model code (position 1)	E	U	
	4-line Dot-Matrix display	•	•	
	Universal power supply (V_{DC} and V_{AC})	•	•	
	microSD card	•	•	
	Installation			
	Remote type	•	•	
	Features on Demand	-	•	
	Special functions			
	Wizard	•	•	
	Event management	•	•	
	Total health check ¹⁾ (diagnostic function)	•	•	
	Dynamic pressure compensation ²⁾	_	•	
	Advanced functions			
	Standard concentration measurement	-	•	
	Advanced concentration measurement	-	•	
	Measurement of heat quantity ²⁾	-	•	
	Net Oil Computing following API standard	-	•	
	Tube health check (diagnostic function)	•	•	
	Batching function	-	•	
	Viscosity function ²⁾	-	•	
	Inputs and outputs			
	Analog output	•	•	
	Pulse/frequency output	•	•	
	Status output	•	•	
	Analog input	-	•	
	Status input	•	•	
	Communication	1		
	HART	•	•	
	Modbus	•	•	

meaning of "-": not available; meaning of "•": available

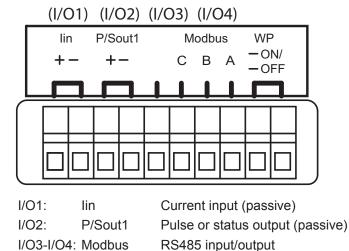
¹⁾ Function is based on external software (FieldMate)


²⁾ Only in combination with an analog input



7.1 Inputs and outputs

Depending on the flow meter specification, there are different configurations of the connection terminal. Following are configuration examples of the connection terminal (value JK and M7 on model code position 13 - see *Communication type and I/O* [> 103] for details):


HART

1/05.	011	Status input
I/O4:	lin	Current input (active/passive)
WP:		Write-protect bridge

Modbus

Write-protect bridge

WP:

7.1.1 Output signals

Galvanic isolation

Active current output *lout*

All circuits for inputs, outputs and power supply are galvanically isolated from each other.

One or two current outputs are available depending on model code position 13.

Depending on the measured value, the active current output delivers 4 – 20 mA.

It may be used for output of the following measured values:

- Flow rate (mass, volume, net partial component flow of a mixture)
- Density
- Temperature
- Pressure
- Concentration

For HART communication devices, it is supplied on the current output *lout1*. The current output may be operated in compliance with the NAMUR NE43 standard.

	Value
Nominal output current	4 – 20 mA
Maximum output current range	2.4 – 21.6 mA
Load resistance	≤ 750 Ω
Load resistance for secure HART communication	230 – 600 Ω
Additive maximum deviation	8 μΑ
Additive output deviation for deviation from 20 °C ambient temperature	0.8 µA/ °C

Fig. 31: Active current output connection lout HART

① Receiver

Passive current output *lout*

	Value
Nominal output current	4 – 20 mA
Maximum output current range	2.4 – 21.6 mA
External power supply	$10.5 - 32 V_{DC}$
Load resistance for secure HART communi- cation	230 – 600 Ω
Load resistance at current output	≤ 911 Ω
Additive maximum deviation	8 μΑ
Additive output deviation for deviation from 20 °C ambient temperature	0.8 μΑ/ °C

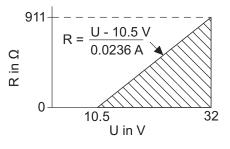


Fig. 32: Maximum load resistance as a function of an external power supply voltage

- R Load resistance
- U External power supply voltage

The diagram shows the maximum load resistance R as a function of voltage U of the connected voltage source. Higher load resistances are allowed with higher power supply values. The usable zone for passive power output operation is indicated by the hatched area.

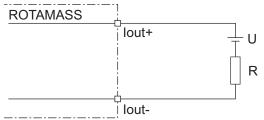
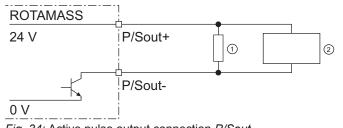


Fig. 33: Passive current output connection lout


Active pulse

output P/Sout

Connection of an electronic counter

Maximum voltage and correct polarity must be observed for wiring.

	Value
Load resistance	> 1 kΩ
Internal power supply	24 V _{DC} ±20 %
Maximum pulse rate	10000 pulses/s
Frequency range	0 – 12.5 kHz

Fig. 34: Active pulse output connection *P/Sout*

- ① Load resistance
- ② Electronic counter

Connection of an electromechanical counter

	Value
Maximum current	150 mA
Average current	≤ 30 mA
Internal power supply	24 V _{DC} ±20 %
Maximum pulse rate	2 pulses/s
Pulse width	20, 33, 50, 100 ms

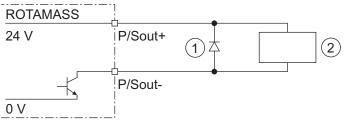


Fig. 35: Active pulse output P/Sout connection with electromechanical counter

- ① Protective diode
- ② Electromechanical counter

Active pulse output P/Sout with internal pull-up resistor

	Value
Internal power supply	24 V _{DC} ±20 %
Internal pull-up resistor	2.2 kΩ
Maximum pulse rate	10000 pulses/s
Frequency range	0 – 12.5 kHz
ROTAMASS 24 V P/Sout+	0

Fig. 36: Active pulse output P/Sout with internal pull-up resistor

P/Sout-

1 Electronic counter

0 V

Passive pulse

Maximum voltage and correct polarity must be observed for wiring.

output P/Sout

	Value
Maximum load current	≤ 200 mA
Power supply	\leq 30 V _{DC}
Maximum pulse rate	10000 pulses/s
Frequency range	0 – 12.5 kHz

ROTAMASS

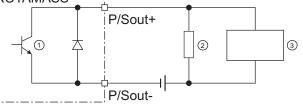


Fig. 37: Passive pulse output connection P/Sout with electronic counter

- 1 Passive pulse or status output
- 2 Load resistance
- Electronic counter 3

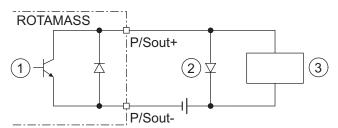


Fig. 38: Passive pulse output P/Sout connection with electromechanical counter

- 1 Passive pulse or status output
- 2 Protective diode
- 3 Electromechanical counter

Nano

Transmitter specification

Active status Since this is a transistor contact, maximum allowed current as well as polarity and level of output *P/Sout* output voltage must be observed during wiring.

	Value	
Load resistance	> 1 kΩ	
Internal power supply	24 V _{DC} ±20 %	
ROTAMASS		

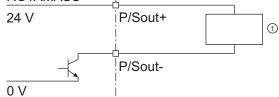


Fig. 39: Active status output connection P/Sout

① External device with load resistance

Active status output *P/Sout* with internal pull-up resistor

	Value
Internal pull-up resistor	2.2 kΩ
Internal power supply	24 V _{DC} ±20 %

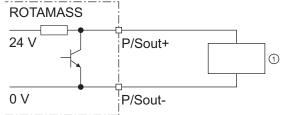
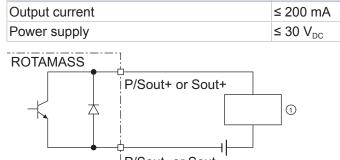



Fig. 40: Active status output P/Sout with internal pull-up resistor

① External device

Passive status output *P/Sout* or *Sout*

Value

_____P/Sout- or Sout-

Fig. 41: Passive status output connection P/Sout or Sout

① External device

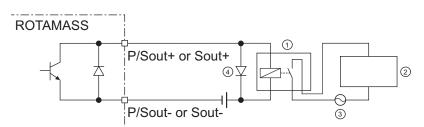


Fig. 42: Passive status output connection P/Sout or Sout for solenoid valve circuit

- ① Relay
- ② Solenoid valve
- ③ Magnetic valve power supply
- ④ Protective diode

A relay must be connected in series to switch alternating voltage.

Output signals according to EN 60947-5-6 (previously NAMUR, worksheet NA001):

Passive pulse or status output *P/Sout* (NAMUR)

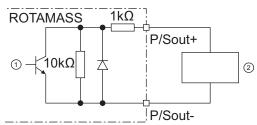


Fig. 43: Passive pulse or status output with switching amplifier connected in series

- Passive pulse or status output
- ② Switching amplifier

7.1.2 Input signals

put signal of 4 - 20 mA.

Active current input *lin*

An individual analog power input is available for external analog devices. The active current input *lin* is provided for connecting a two-wire transmitter with an out-

	Value
Nominal input current	4 – 20 mA
Maximum input current range	2.4 – 21.6 mA
Internal power supply	24 V _{DC} ±20 %
Internal load resistance Rotamass	≤ 160 Ω

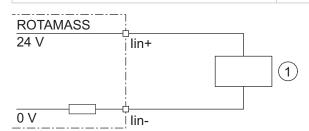


Fig. 44: Connection of external device with passive current output

① External passive current output device

Passive current input *lin*

The passive current input *lin* is provided for connecting a four-wire transmitter with an output signal of 4 – 20 mA.

	Value
Nominal input current	4 – 20 mA
Maximum input current range	2.4 – 21.6 mA
Maximum input voltage	\leq 32 V _{DC}
Internal load resistance Rotamass	≤ 160 Ω

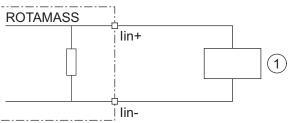


Fig. 45: Connection of external device with active current output

① External active current output device

Status input Sin

 Image: Do not connect a signal source with electric voltage.

 The status input is provided for use of voltage-free contacts with the following specification:

 Switching status
 Resistance

 Closed
 < 200 Ω

 Open
 > 100 k Ω

 ROTAMASS
 Sin+

 Image: Graph of the status input connection
 Sin

 Fig. 46: Status input connection
 Sin

7.2 Power supply

Power supply

Alternating voltage (rms):

- Power supply ¹): 24 V_{AC} +20 % -15 % or 100 240 V_{AC} +10 % -20 %
- Power frequency: 47 63 Hz

Direct-current voltage:

- Power supply¹⁾: 24 V_{DC} +20 % -15 % or 100 120 V_{DC} +8,3 % -10 %
- $^{1)}$ for option MC_ (DNV GL approval) supply voltage is limited to 24 V

Power consumption $P \le 10 \text{ W}$ (including sensor)

Power supply failure In the event of a power failure, the flow meter data are backed up on a non-volatile internal memory. In case of devices with display, the characteristic sensor values, such as nominal diameter, serial number, calibration constants, zero point, etc. and the error history are also stored on a microSD card.

7.3 Cable specification

With the remote type, the original connecting cable from Rota Yokogawa must be used to connect the sensor with the transmitter. The connecting cable included in the delivery may be shortened. An assembly set along with the appropriate instructions are enclosed for this purpose.

The connecting cable can be ordered as option in various lengths as a standard type (device options L___) or as marine approved fire retardant cable (device options Y___), see chapters *Connecting cable type and length* [\triangleright 107] and *Marine Approval* [\triangleright 114] for details.

The maximum cable length to keep the specification is 30 m (98.4 ft). Longer cables must be ordered as a separate item, refer to *Connecting cable type and length* [▶ 107].

8 Advanced functions and Features on Demand (FOD)

Rotamass Total Insight includes many dedicated application and maintenance functions that can be ordered simultaneously with the device or can be purchased and activated in a second time (only with the Ultimate transmitter).

	Trans	mitter	Communication type and I/O			
Functional scope	Essential	Ultimate	Available type		Mandatory I/O	
	Essential Comparison		HART	Modbus		
Model code (pos. 1 and 13)	E	U	J_	M_		
Standard concentration measurement	_	•	•	•		
Advanced concentration measurement	_	•	•	•	Not needed	
Net Oil Computing following API standard	_	• • •				
Tube health check	•	•	•	•		
Batching function	_	•	•	_	1 status output for one-stage batching 2 status outputs for two-stage batching	
Viscosity function	-	•	٠	-	1 analog input	
Measurement of heat quan- tity	-	•	٠	•	1 analog input	

meaning of "-": not available; meaning of "•": available

8.1 Concentration and petroleum measurement

Standard concentration measurement	The standard concentration measurement (option CST) can be used for concentration measurements of emulsions or suspensions when density of the fluid involved depends only on temperature.			
	solutions if there is only minor interaction ble. For questions regarding a specific a sales organization. The appropriate der this option and input into the transmitter	ent can also be used for many low-concentration on between the liquids or if the miscibility is negligi- application, contact the responsible Yokogawa nsity coefficients must be determined prior to using r. To do so, the recommendation is to determine data using DTM in the Yokogawa FieldMate pro- the delivery.		
Petroleum measurement function NOC (option C52)	"NOC" is an abbreviation for the "Net Oil Computing" function that provides real-time measurements of water cut and includes "API" (American Petroleum Institute) correction according to API MPMS Chapter 11.1.			
(the emulsion oil and gas that result to b sity is used to calculate volume flow of function (option C52) includes also a G	Rotamass Total Insight measures the density of e lower than the oil density. If the measured den- oil, the result would not be correct. Therefore NOC as Void Fraction function (GVF). GVF may reduce at a minimum recognizing the occurrence of gas in late the volume flow.		
	Oil properties can be selected using Oil	type's pre-settings or using "Alpha 60".		
	Oil and water types predefined in the fu	Inctions		
	Oil types	Water types		
	CrudeRefined Products:	Standard Mean Ocean WaterUNESCO 1980		
	Fuel, Jet Fuel, Transition, GasolineLubricatingCustom Oil	 Fresh water density by API MPMS 11.4 Produced water density by API MPMS 20.1 Appendix A.1 Brine water density by EI-Dessouky, Ettouy (2002) Custom 		
		n calculate: Net oil mass flow, net water mass me flow and net corrected oil volume flow.		
Advanced		nent (option AC_) is recommended for more com-		

Advanced concentration measurement The advanced concentration measurement (option AC_{-}) is recommended for more complex applications, such as for liquids that interact.

Following is a table that lists possible pre-configured concentrations. The desired data sets must be requested by the customer to the Yokogawa sales organization at the time the order is placed. The customer is responsible to ensure chemical compatibility of the material of the wetted parts with the measured chemicals. For strong acids or oxidizers which attack steel pipes a variant with wetted parts made of Ni alloy C-22/2.4602 is necessary.

Set	Fluid A / B	Concentra- tion range	Unit	Tempera- ture range in °C	Density range in kg/l	Data source for density data
C01	Sugar / Water	0 – 85	°Bx	0 – 80	0.97 – 1.45	PTB Messages 100 5/90: "The density of watery sucrose solutions after the introduction of the international temperature scale of 1990 (ITS1990)" Table 5
C02 ¹⁾	NaOH / Water	0 – 54	WT%	0 – 100	0.95 – 1.58	D´Ans-Lax, Handbook for chemists and physicists Vol.1, 3rd edition, 1967
C03	KOH / Water	1 – 55	WT%	54 – 100	1.01 – 1.58	D´Ans-Lax, Handbook for chemists and physicists Vol.1, 3rd edition, 1967
C04	NH ₄ NO ₃ / Water	1 – 50	WT%	0 - 80	0.97 – 1.24	Table of density data on request
C05	NH ₄ NO ₃ / Water	20 – 70	WT%	20 – 100	1.04 – 1.33	Table of density data on request
C06 ¹⁾	HCI / Water	22 – 34	WT%	20 - 60	1.08 – 1.17	D´Ans-Lax, Handbook for chemists and physicists Vol.1, 3rd edition, 1967
C07	HNO ₃ / Water	50 - 67	WT%	10 – 60	1.26 – 1.40	Table of density data on request
C09 ¹⁾	H ₂ O ₂ / Water	30 – 75	WT%	4.5 - 43.5	1.00 – 1.20	Table of density data on request
C10 ¹⁾	Ethylene glycol / Water	10 – 50	WT%	-20 – 40	1.005 – 1.085	Table of density data on request
C11	Starch / Water	33 – 42.5	WT%	35 – 45	1.14 – 1.20	Table of density data on request
C12	Methanol / Water	35 – 60	WT%	0 - 40	0.89 – 0.96	Table of density data on request
C20	Alcohol / Water	55 – 100	VOL%	10 – 40	0.76 – 0.94	Table of density data on request
C21	Sugar / Water	40 - 80	°Bx	75 – 100	1.15 – 1.35	Table of density data on request
C30	Alcohol / Water	66 – 100	WT%	15 – 40	0.77 – 0.88	Standard Copersucar 1967
C37	Alcohol / Water	66 – 100	WT%	10 – 40	0.772 – 0.885	Brazilian Standard ABNT

¹⁾ We recommend using devices with wetted parts made of nickel alloy C22. Contact the Yokogawa sales organization about availability.

Maximum 4 C__ option sets can be ordered for one device simultaneously.

For details about the ordering information, see *Concentration and petroleum measurement* [▶ 108].

8.2 Batching function

Batching and filling processes are typical applications in different industries as food and beverage, cosmetic, pharmaceutical, chemical and oil & gas.

Rotamass Total Insight offers an integrated "Batching function" to automatize the task. A "self-learning" algorithm optimizes the process and allows high accurate results.

The function supports two filling modes:

- one-stage mode with single valve
- two-stage mode to control two valves for accurate filling

Without using an external flow computer, data related to the process can be transmitted via communication protocol. The error management function allows the user to set alarms and warnings accordingly the application needs.

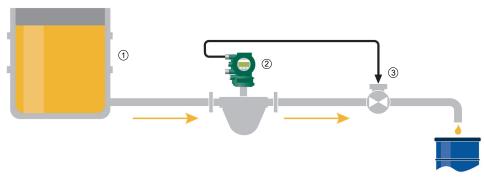


Fig. 47: One-stage mode (The above diagram illustrates the fundamental functionality for one of several combination possibilities)

(3)

Valve

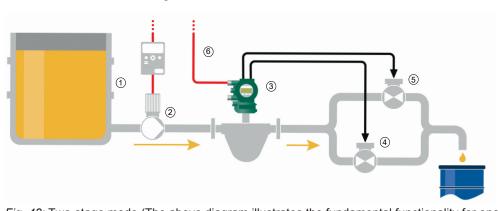


Fig. 48: Two-stage mode (The above diagram illustrates the fundamental functionality for one of several combination possibilities)

- 1 Storage tank (4) Valve "A"
- 2 Pump

1

2

Storage tank

Rotamass Total Insight

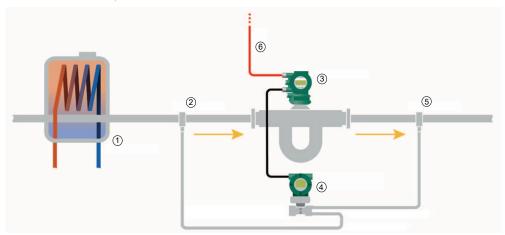
HART

(5) Valve "B"

6

3 Rotamass Total Insight

For details about the ordering information, see Batching function [108].


8.3 Viscosity function

Viscosity function allows the user to have an estimation of the viscosity of the fluid.

The function can be used as redundant viscosity control or as reference value to activate other processes like for instance fluid heating systems.

The viscosity estimation is calculated based on a comparison between measured pressure loss Δp and a "calculated" Δp_{cal} between two points of the pipe nearby the flow meter (refer to related instruction manual for the correct installation).

In order to use the function a pressure measurement device (separate order) directly connected to the analog input of the Rotamass Total Insightis necessary. Based on iteration process, Rotamass Total Insight finds the value of viscosity μ that returns a Δp_{cal} closed to the measured Δp .

Fig. 49: Viscosity function returns a reference value used to activate a heating system (The above diagramm illustrates the fundamental functionality for one of several installation possibilities)

- ① Heat exchanger
- ② Pressure tap 1

- ④ Differential pressure transmitter
- ⑤ Pressure tap 2
- ③ Rotamass Total Insight
- 6 HART

For details about the ordering information, see Viscosity function [> 108].

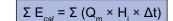
8.4 Tube health check

Tube health check function is a valuable diagnostic function that returns the status of the measuring tubes of the Rotamass Total Insight giving the possibility to set up a real predictive maintenance system or to detect corrosion or clogging of the measuring tubes.

The function is able to measure periodically the change of the stiffness of the measuring tubes. Storage of the values in the internal microSD card is available for HART communication type.

Measurement values can be also transmitted via HART or Modbus protocol and therefore integrated in the customers condition monitoring system.

An alarm or an external event can be activated directly from Rotamass Total Insight in case the measured value exceeds a threshold defined by the user.


Thanks to the PC based software FieldMate, the single measurements can be plotted in a diagram and printed in a report for quality and maintenance documentation.

For details about the ordering information, see Tube health check [> 112].

8.5 Measurement of heat quantity

The function allows to evaluate the total fuel calorific value of the measured fluid. The function can work with a constant value of the calorific value of the fluid, but in order to have a precise evaluation we suggest to use an additional device like a gas chromatograph (not included in the supply). The external device that supplies the instantaneous calorific value is connected with the current input of the transmitter (model code position 13: from JH to JN). Based on the mass flow, the total calorific energy of the fluid is calculated as below:

Formula for total calorific energy

E_{cal} Calorific energy

- Q_m Mass flow rate
- H_i Calorific value variable
- Δt Time interval between two measurements

Other formula based on volume and corrected volume are included in the function and can be set using the display or the configuration PC software FieldMate.

For details about the ordering information, see *Measurement of heat quantity* [> 113].

8.6 Features on Demand (FOD)

In combination with the "Ultimate" transmitter, the functions can be purchased and activated later as "Features on Demand".

After the order, the user receives a KeyCode for input in the transmitter. To activate the desired functions, refer to related software instruction manual (IM01U10S0_-00__-R).

The options of FOD functions for Rotamass Total Insight are shown below.

To order these functions refer to the related general specifications for FOD functions (GS01U10B20-00__-R).

Option category Option		Description	Valid from main SW rev. ¹⁾	
			Modbus	HART
	CST	Standard concentration measurement		
Concentration and petroleum	AC0	Advanced concentration measurement, customer settings	R1.01.01	R1.01.02
measurement	C52	Net Oil Computing (NOC) following API standard		
Batching function	BT	Batching and filling function	_	R3.01.01
Viscosity function	VM	Viscosity computing function for liquids		
Measurement of heat quantity	CGC	Measurement of the total transported energy content of a fuel in connection with a sensor for determining the fuel's calorific value (e.g. a gas chromato- graph, not included in scope of delivery).	R1.01.01	R1.01.02
Tube health check	тс	Tube health check	R1.01.01	R1.01.02 ²⁾

¹⁾ Main software revision is given by the transmitter for which the FODs are intended for. For details refer to software instruction manual (IM01U10S0_-00__-R).

²⁾ From software rev. R3.01.01 tube health check includes trend line report (by FieldMate) and the possibility to store the data on microSD card.

Please be sure that your device is compatible with the selected function and in case of doubts please contact Yokogawa Service Department providing the serial number or the model code of the device where you want activate the function.

9 Approvals and declarations of conformity

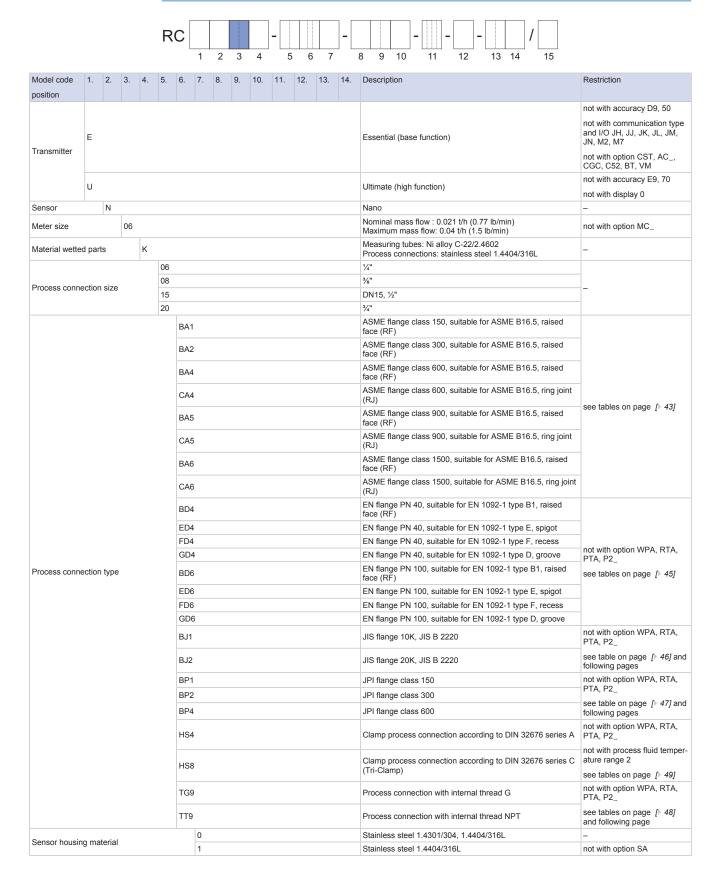
CE marking	The Rotamass Total Insight meets the statutory requirements of the applicable EU Direc- tives. By attaching the CE mark, Rota Yokogawa confirms conformity of the field instru- ment with the requirements of the applicable EU Directives. The EU Declaration of Con- formity is enclosed with the product on a data carrier.
RCM	Rotamass Total Insight meets the EMC requirements of the Australian Communications and Media Authority (ACMA).
Ex approvals	All data relevant for explosion protection are included in separate Explosion Proof Type Manuals.
NACE	Chemical composition of wetted materials 316L/316/1.4404/1.4401/1.4435 and Ni-Alloy C-22/2.4602 are conform to: • ANSI / NACE-MR0175 / ISO15156-2 • ANSI / NACE-MR0175 / ISO15156-3 • NACE MR0103
	For details please see Rota Yokogawa declaration about NACE conformity 8660001.
Pressure equipment approvals	The Rotamass Total Insight is in compliance with the statutory requirements of the appli- cable EU Pressure Equipment Directive (PED).
	The customer is fully responsible of selecting proper materials which withstand corrosive or erosive conditions. In case of heavy corrosion and/or erosion the instrument may not withstand the pressure and an incident may happen with human and/or environmental harm. Yokogawa will not take any liability regarding damage caused by corrosion or erosion. If corrosion or erosion may happen, the user has to check periodically if the necessary wall thickness is still in place.
Functional safety	The Rotamass Total Insight with HART communication type complies with the relevant safety management requirements of IEC 61508:2010 SIL3. The Rotamass Total Insight product families can be used to implement a SIL 2 safety function (with HFT = 0) or a SIL 3 safety function (with HFT = 1) with all its 4 – 20 mA outputs. The available number of outputs depends on the model code. For further information please contact Yokogawa sales department or look here http://www.exida.com/SAEL-Safety/yokogawa-electric-corporation-rotamass-ti-series

Туре	Approval or certification
	EU Directive 2014/34/EU
	ATEX approval:
	DEKRA 15ATEX0023 X
	CE 0344 II2G or II2(1)G or II2D or II2(1)D
	Applied standards:
	 EN 60079-0 +A11
	• EN 60079-1
	• EN 60079-7
	 EN 60079-11
	• EN 60079-31
ATEX	Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or
	Ex db e [ia Ga] IIC T6 Gb or
	Ex db [ia Ga] IIB T6 Gb or Ex db e [ia Ga] IIB T6 Gb
	Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or
	Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or
	Ex tb [ia Da] IIIC T75 °C Db
	Note: The marking on the product may be changed from Ex e to Ex eb based on statutory requirements.
	Remote sensor (depending on the model code): Ex ib IIC T6T1 Gb or
	Ex ib IIB T6T1 Gb
	Ex ib IIIC T150 °C Db or
	Ex ib IIIC T260 °C Db
	IECEx approval:
	IECEX DEK 15.0016X
	Applied standards:
	 IEC 60079-0 IEC 60079-1
	 IEC 60079-7
	 IEC 60079-11
	 IEC 60079-31
	Remote transmitter (depending on the model code):
	Ex db [ia Ga] IIC T6 Gb or
IECEx	Ex db e [ia Ga] IIC T6 Gb or Ex db [ia Ga] IIB T6 Gb or
	Ex db e [ia Ga] IIB T6 Gb
	Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or
	Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex tb [ia Da] IIIC T75 °C Db
	Note: The marking on the product may be changed from Ex e to Ex eb
	based on statutory requirements.
	Remote sensor (depending on the model code):
	Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb
	Ex ib IIIC T150 °C Db or
	Ex ib IIIC T260 °C Db

Туре	Approval or certification
	FM approvals:
	 US Cert No. FM16US0095X
	 CA Cert No. FM16CA0031X
	Applied standards:
	 Class 3600
	 Class 3610
	 Class 3615
	 Class 3810
	 Class 3616
	 NEMA 250
	 ANSI/IEC 60529
	 CSA-C22.2 No. 0-10
	 CSA-C22.2 No. 0.4-04
	 CSA-C22.2 No. 0.5-1982
	 CSA-C22.2 No. 94.1-07
	 CSA-C22.2 No. 94.2-07
	CAN/CSA-C22.2 No. 60079-0
	CAN/CSA-C22.2 No. 60079-11
	CAN/CSA-C22.2 No. 61010-1-04
	 CSA-C22.2 No. 25-1966
	 CSA-C22.2 No. 30-M1986
FM	 CSA-C22.2 No. 60529
(CA/US)	Remote transmitter (depending on the model code): CL I, DIV 1, GP ABCD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIC; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Entity Temperature class T6
	or CL I, DIV 1, GP ABCD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIC; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Temperature class T6; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Entity Temperature class T6
	or CL I, DIV 1, GP CD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB; Associated Apparatus CL I/II/III DIV 1, GP CDEFG; CL I ZN 0 GP IIB Entity Temperature class T6
	or CL I, DIV 1, GP CD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB; Associated Apparatus CL I/II/III DIV 1, GP CDEFG; CL I ZN 0 GP IIB Temperature class T6; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIB Entity Temperature class T6
	Remote sensor (depending on the model code): IS CL I/II/III, DIV 1, GP ABCDEFG; CL I, ZN 0, GP IIC Temperature class T* or
	IS CL I/II/III, DIV 1, GP ABCDEFG; CL I, ZN 0, GP IIB Temperature class T*

Туре	Approval or certification
Type	Approval or certification INMETRO approval: DEKRA 16.0012X Applied standards: • ABNT NBR IEC 60079-0 • ABNT NBR IEC 60079-1 • ABNT NBR IEC 60079-7 • ABNT NBR IEC 60079-11 • ABNT NBR IEC 60079-31 Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or
(BR)	Ex db e [ia Ga] IIC T6 Gb or Ex db [ia Ga] IIB T6 Gb or Ex db e [ia Ga] IIB T6 Gb Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex tb [ia Da] IIIC T75 °C Db Remote sensor (depending on the model code): Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb
NEPSI (CN)	Ex ib IIIC T150 °C Db or Ex ib IIIC T260 °C Db Applied standards: • GB3836.1 • GB3836.2 • GB3836.3 • GB3836.4 • GB3836.19 • GB3836.20
	Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or Ex db [ia Ga] IIC T6 Gb or Ex db [ia Ga] IIB T6 Gb or Ex db [ia Ga] IIB T6 Gb Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex [iaD 20] tD A21 IP6X T75°C Note: The marking on the product may be changed from Ex e to Ex eb
	based on statutory requirements. Remote sensor (depending on the model code): Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb Ex ibD 21 IP6X T150 °C or Ex ibD 21 IP6X T260 °C

Туре	Approval or certification
	PESO approval: PESO approval is based on ATEX certification by DEKRA
	Certificate Number:
	DEKRA 15ATEX0023 X
	PESO approval is only valid for type of protection "d" flameproof enclosure. Option Q11 must be ordered for conformity of device with PESO require- ments.
	Equipment Reference Numbers:
	P400958/_
	P400964/_
	P400966/_
	P400967/_
	P400969/_
PESO	P400970/_
(IN)	P400971/_
	P400972/_
	P400973/_
	Applied standards:
	 EN 60079-0 +A11
	 IS/IEC 60079-1
	• EN 60079-11
	Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or
	Ex db [ia Ga] IIB T6 Gb or
	Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb
	Remote sensor (depending on the model code):
	Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb



Туре	Approval or certification
Safety Label (TW)	Please refer to IECEx approval for specifications. A device with IECEx approval (model code position 11, value: SF2_) must be ordered to comply with Safety Label requirements. For export to Taiwan and to get the Safety Label the Yokogawa representative in Taiwan must be contacted in advance.
Ingress pro- tection	IP66/67 and NEMA 4X
	EU Directive 2014/30/EU per EN 61326-1 Class A Table 2 and EN 61326-2-3
	NAMUR NE21
EMC	RCM in Australia/New Zealand
	KC mark in Korea
	TR CU 020 in EAC area
Korea Ex	For further information places contact view Veleccus representative
EAC Ex	For further information please contact your Yokogawa representative
	EU Directive 2014/35/EU per EN 61010-1 and EN 61010-2-030
LVD	TR CU 004 in EAC area
	EU Directive 2014/68/EU per AD 2000 Code
PED	TR CU 032 in EAC area
Marine	DNV GL Type approval according to DNVGL-CP-0338 for options MC2 and MC3
RoHS	EU directive 2011/65/EU per EN 50581
	EU directive 2012/19/EU (Waste Electrical and Electronic Equipment) is only valid in the European Economic Area.
WEEE	This instrument is intended to be sold and used only as a part of equipment which is excluded from the WEEE directive, such as large-scale stationary industrial tools, a large-scale fixed installation etc., and therefore it is in principle fully compliant with WEEE directive. The instrument should be dis- posed of in accordance with appplicable national legislations or regulations, respectively.
SIL	Exida Certifcate per IEC61508:2010 Parts 1-7 SIL 2 @ HFT=0; SIL 3 @ HFT =1
NAMUR	NAMUR NE95 compliant
Metrological Regulations	Rotamass Total Insight is registered as a measuring instrument in the fol- lowing countries: China Russia
	Please contact your Yokogawa representative regarding respective "Pat- tern Approval Certificate of Measuring Instruments" and export to these countries.

10 Ordering information

10.1 Overview model code Nano 06

Model code position	1. 2.	3.	4	. 5.	6.		7.	8.	9.	10). 11	. 12	13.	14.	Description	Restriction
								0							Standard: -50 – 150 °C (-58 – 302 °F)	-
Process fluid t	emperatu	ire rai	nge					2							Mid-range: -50 – 260 °C (-58 – 500 °F)	not with design and housing A, E, J
								2								not with process connection type HS4, HS8
									E9						Liquid: 0.2 % maximum mass flow deviation D_{flat} 20 g/l density deviation	not with transmitter U
									D9						Liquid: 0.15 % maximum mass flow deviation D_{flat} 20 g/l density deviation	not with transmitter E
Mass flow and	l density a	accura	асу						70						Gas: 0.75% maximum mass flow deviation D_{flat}	not with transmitter U not with option CST, AC_, C52, VM
									50						Gas: 0.5% maximum mass flow deviation D_{flatt}	not with transmitter E not with option CST, AC_, C52, VM
										A					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck	not with process fluid temper- ature range 2
															sensor	not with option T
										В					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor	-
										E					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2
Design and ho	nusina														-	not with option T
Design and ne	Jushig									F					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and long neck sensor	-
										J					Remote type stainless steel transmitter and standard neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21
									к					Remote type stainless steel transmitter and long neck sen- sor	not with option T not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21	
											N	100			None	not with communication type and I/O JP, JQ, JR, JS
																not with option Q11 not with design and housing
												21			ATEX, explosion group IIC and IIIC	J, K
											K	22			ATEX, explosion group IIB and IIIC	-
											SF	21			IECEx, explosion group IIC and IIIC	not with design and housing J, K not with option Q11
											SE	22	 		IECEx, explosion group IIB and IIIC	not with option Q11
																not with design and housing J, K
											G	-21			EAC Ex, explosion group IIC and IIIC	only with option VE or VR not with option Q11
											G	-22			EAC Ex, explosion group IIB and IIIC	only with option VE or VR
												14				not with option Q11
Ex approval											_	11			FM, groups A, B, C, D, E, F, G	not with cable entries 4
												-12	 		FM, groups C, D, E, F, G INMETRO, explosion group IIC and IIIC	not with option Y, Q11 not with design and housing J, K
																not with option Q11
											U	-22			INMETRO, explosion group IIB and IIIC	not with option Q11
											N	-21			NEPSI, explosion group IIC and IIIC	not with design and housing J, K only with option CN
																not with option Q11
											N	22			NEPSI, explosion group IIB and IIIC	only with option CN
													 			not with option Q11 not with design and housing
											PF	21			Korea Ex, explosion group IIC and IIIC	J, K only with option KC
																not with option Q11
											P	22			Korea Ex, explosion group IIB and IIIC	only with option KC
											Pi					not with option Q11
Cable entries												2			ANSI ½" NPT	 not with Ex approval FF11 or
												4			ISO M20x1.5	FF12

Model code 1. 2. 3. 4. 5. 6. 7. 8. 9. position	10. 11	. 12.	13.	14.	Description	Restriction
			JA		1 active current output HART, 1 passive pulse or status output	
			JB		2 active current outputs one with HART, 2 passive pulse or status outputs	
			JC		2 active current outputs one with HART, 1 passive pulse or status output, 1 voltage-free status input	
			JD		1 active current output HART, 2 passive pulse or status outputs, 1 passive status output	
			JE		1 active current output HART, 2 passive pulse or status outputs, 1 voltage-free status input	not with option CGC, VM
			JF		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input	
			JG		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output, 1 voltage-free status input	
Communication type and I/O			JH		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 active current input	
			JJ		1 active current output HART, 2 passive pulse or status outputs, 1 active current input	
			JK		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 active current input	
			JL		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 passive current input	not with transmitter E
			JM		1 active current output HART, 2 passive pulse or status outputs, 1 passive current input	
			JN		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 passive current input	
			JP		2 passive current outputs one with HART, 1 passive pulse or status output	
			JQ		2 passive current outputs one with HART, 2 passive pulse or status outputs	not with Ex approval NN00
			JR		2 passive current outputs one with HART, 1 passive NAMUR pulse or status output	not with option CGC, MC2, MC3, VM
			JS		2 passive current outputs one with HART, 2 passive NAMUR pulse or status outputs	
			M0		Modbus output, 1 passive pulse or status output	not with option CGC, PS, BT, VM
			M2		Modbus output, 1 passive pulse or status output, 1 active current input	not with transmitter E, not with option PS, BT, VM
Communication type and I/O			М3		Modbus output, 2 passive pulse or status outputs	
			M4		Modbus output, 1 passive pulse or status output, 1 active pulse or status output	not with option CCC DC
			M5		Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor	not with option CGC , PS, BT, VM
			M6		Modbus output, 1 passive pulse or status output, 1 active current output	
			M7		Modbus output, 1 passive pulse or status output, 1 passive current input	not with transmitter E, not with option PS, BT, VM
Display				0	No display With display	not with transmitter U

RC 2 10 12 13 14 15 1 3 4 5 6 7 8 9 11 Model code 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Description Restriction 1. 2. position not with accuracy D8, C8, 50 not with communication type and I/O JH, JJ, JK, JL, JM, JN, M2, M7 Е Essential (base function) Transmitter not with option CST, AC_, CGC, C52, BT, VM not with accuracy E8, 70 U Ultimate (high function) not with display 0 Sensor N Nano Nominal mass flow : 0.045 t/h (1.7 lb/min) Maximum mass flow: 0.094 t/h (3.5 lb/min) Meter size 08 not with option MC_ Measuring tubes: Ni alloy C-22/2.4602 Material wetted parts Κ Process connections: stainless steel 1.4404/316L 1⁄4" 06 08 3/8" 15 DN15, 1/2" Process connection size 20 3/4" 25 DN25_1" 40 DN40, 11/2" ASME flange class 150, suitable for ASME B16.5, raised BA1 face (RF) ASME flange class 300, suitable for ASME B16.5, raised BA2 face (RF) ASME flange class 600, suitable for ASME B16.5, raised BA4 face (RF) ASME flange class 600, suitable for ASME B16.5, ring joint CA4 (RJ) see tables on page [> 43] ASME flange class 900, suitable for ASME B16.5, raised BA5 face (RF) ASME flange class 900, suitable for ASME B16.5, ring joint CA5 (RJ) ASME flange class 1500, suitable for ASME B16.5, raised BA6 face (RF) ASME flange class 1500, suitable for ASME B16.5, ring joint CA6 (RJ) EN flange PN 40, suitable for EN 1092-1 type B1, raised BD4 face (RF) FD4 EN flange PN 40, suitable for EN 1092-1 type E, spigot FD4 EN flange PN 40, suitable for EN 1092-1 type F, recess not with option WPA, RTA, EN flange PN 40, suitable for EN 1092-1 type D, groove GD4 PTA, P2 EN flange PN 100, suitable for EN 1092-1 type B1, raised face (RF) Process connection type BD6 see tables on page [> 45] ED6 EN flange PN 100, suitable for EN 1092-1 type E, spigot EN flange PN 100, suitable for EN 1092-1 type F, recess FD6 GD6 EN flange PN 100, suitable for EN 1092-1 type D, groove not with option WPA, RTA, BJ1 JIS flange 10K, JIS B 2220 PTA, P2 see table on page [46] and JIS flange 20K, JIS B 2220 BJ2 following pages not with option WPA, RTA, BP1 JPI flange class 150 PTA, P2_ BP2 JPI flange class 300 see table on page [> 47] and BP4 JPI flange class 600 following pages not with option WPA, RTA, HS4 Clamp process connection according to DIN 32676 series A PTA, P2 not with process fluid temper-Clamp process connection according to DIN 32676 series C ature range 2 HS8 (Tri-Clamp) see tables on page [> 49] not with option WPA, RTA, TG9 Process connection with internal thread G PTA, P2_ see tables on page [> 48] тт9 Process connection with internal thread NPT and following page Stainless steel 1.4301/304, 1.4404/316L 0 Sensor housing material 1 Stainless steel 1 4404/316I not with option SA

10.2 Overview model code Nano 08

Nano Ordering information

Model code position	1. 2.	3.	4.	5.	6.	7.	8.	9.	•	10.	11.	12.	13.	14.	Description	Restriction
							0								Standard: -50 – 150 °C (-58 – 302 °F)	-
Process fluid te	emperatu	re rar	nge				2								Mid-range: -50 – 260 °C (-58 – 500 °F)	not with design and housing A, E, J not with process connection type HS4, HS8
								E	8						Liquid: 0.2 % maximum mass flow deviation D_{flats} 8 g/l density deviation	not with transmitter U
								D	8						Liquid: 0.15 % maximum mass flow deviation D_{fat} 8 g/l density deviation	
								С	8						Liquid: 0.1 % maximum mass flow deviation D_{flatt} 8 g/l density deviation	not with transmitter E
Mass flow and	density a	accura	асу					-							- 9	not with transmitter U
								70	0						Gas: 0.75% maximum mass flow deviation $D_{flat},$	not with option CST, AC_, C52, VM
								50	0						Gas: 0.5% maximum mass flow deviation D _{flat} ,	not with transmitter E
									-						nat?	not with option CST, AC_, C52, VM
										A					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor	not with process fluid temper ature range 2 not with option T
										В					Remote type with "urethane-cured polyester powder coating"	
									ļ	U					coated aluminum transmitter housing and long neck sensor	-
										E					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2 not with option T
Design and ho	using									F					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and long neck sensor	-
										J					Remote type stainless steel transmitter and standard neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21
					-							not with option T				
									1	K					Remote type stainless steel transmitter and long neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21
											NN00)			None	not with communication type and I/O JP, JQ, JR, JS not with option Q11
											KF21				ATEX, explosion group IIC and IIIC	not with design and housing
																J, K
											KF22				ATEX, explosion group IIB and IIIC	- not with design and housing
											SF21				IECEx, explosion group IIC and IIIC	J, K not with option Q11
											SF22				IECEx, explosion group IIB and IIIC	not with option Q11
																not with design and housing J, K
											GF2	I			EAC Ex, explosion group IIC and IIIC	only with option VE or VR
																not with option Q11
											GF22	, ,				only with option VE or VR
											GFZ	<u>.</u>			EAC Ex, explosion group IIB and IIIC	not with option Q11
											FF11				FM, groups A, B, C, D, E, F, G	not with cable entries 4
Ex approval											FF12				FM, groups C, D, E, F, G	not with option Y, Q11 not with design and housing
											UF21				INMETRO, explosion group IIC and IIIC	J, K
											UF22)			INMETRO, explosion group IIB and IIIC	not with option Q11 not with option Q11
																not with design and housing J, K
											NF21				NEPSI, explosion group IIC and IIIC	only with option CN
																not with option Q11
											NF22	2			NEPSI, explosion group IIB and IIIC	only with option CN not with option Q11
																not with design and housing J, K
											PF21				Korea Ex, explosion group IIC and IIIC	only with option KC
																not with option Q11
											PF22	!			Korea Ex, explosion group IIB and IIIC	only with option KC
												2			ANSI ½" NPT	not with option Q11
Cable entries																 not with Ex approval FF11 or
												4			ISO M20x1.5	FF12

Model code	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
	1			1						1	1		JA		1 active current output HART, 1 passive pulse or status output	
													JB		2 active current outputs one with HART, 2 passive pulse or status outputs	
													JC		2 active current outputs one with HART, 1 passive pulse or status output, 1 voltage-free status input	
													JD		1 active current output HART, 2 passive pulse or status outputs, 1 passive status output	
													JE		1 active current output HART, 2 passive pulse or status outputs, 1 voltage-free status input	not with option CGC, VM
													JF		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input	
													JG		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output, 1 voltage-free status input	
Communicatio	on type	e and	1 I/O										JH		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 active current input	
													JJ		1 active current output HART, 2 passive pulse or status outputs, 1 active current input	
													JK		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 active current input	not with transmitter E
													JL		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 passive current input	
													JM		1 active current output HART, 2 passive pulse or status outputs, 1 passive current input	
													JN		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 passive current input	
													JP		2 passive current outputs one with HART, 1 passive pulse or status output	
													JQ		2 passive current outputs one with HART, 2 passive pulse or status outputs	not with Ex approval NN00
													JR		2 passive current outputs one with HART, 1 passive NAMUR pulse or status output	not with option CGC, MC2, MC3, VM
													JS		2 passive current outputs one with HART, 2 passive NAMUR pulse or status outputs	
													MO		Modbus output, 1 passive pulse or status output	not with option CGC, PS, BT, VM
													M2		Modbus output, 1 passive pulse or status output, 1 active current input	not with transmitter E, not with option PS, BT, VM
Communicatio	on type	e and	1 I/O										М3		Modbus output, 2 passive pulse or status outputs	
													M4		Modbus output, 1 passive pulse or status output, 1 active pulse or status output	
													M5		Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor	not with option CGC , PS, BT, VM
													M6		Modbus output, 1 passive pulse or status output, 1 active current output	
													M7	1-	Modbus output, 1 passive pulse or status output, 1 passive current input	not with transmitter E, not with option PS, BT, VM
Display														0	No display With display	not with transmitter U

10.3 Overview model code Nano 10

			R		3 4	5 6 7		3 9 10 11 12 13 14 15	
Model code position	1. 2. 3	. 4.	5.	6. 7. 8. 9	9. 10. 11.	12. 13.	14.	Description	Restriction
					I				not with accuracy D7, D3, C7, C3, 50
Transmitter	E							Essential (base function)	not with communication type and I/O JH, JJ, JK, JL, JM, JN, M2, M7
									not with option CST, AC_, CGC, C52, BT, VM
	U							Ultimate (high function)	not with accuracy E7, 70 not with display 0
Sensor	N							Nano	-
Meter size	1	0						Nominal mass flow : 0.17 t/h (6.2 lb/min) Maximum mass flow: 0.3 t/h (11 lb/min)	-
Material wetter	d parts	к						Measuring tubes: Ni alloy C-22/2.4602 Process connections: stainless steel 1.4404/316L	-
			06					1/4"	
			08					3/8"	
			15					DN15, ½"	
Process conne	ection size		20					3/4"	
			25					DN25, 1"	_
			40					DN40, 1½"	_
			40	BA1				ASME flange class 150, suitable for ASME B16.5, raised face (RF)	
				BA2				ASME flange class 300, suitable for ASME B16.5, raised face (RF)	
				BA4				ASME flange class 600, suitable for ASME B16.5, raised face (RF)	_
				CA4				ASME flange class 600, suitable for ASME B16.5, ring joint (RJ)	-
				BA5				ASME flange class 900, suitable for ASME B16.5, raised face (RF)	see tables on page [> 43]
				CA5				ASME flange class 900, suitable for ASME B16.5, ring joint (RJ) $% \left(R\right) =0.012$	_
				BA6				ASME flange class 1500, suitable for ASME B16.5, raised face (RF)	_
				CA6				ASME flange class 1500, suitable for ASME B16.5, ring joint (RJ) $$	
				BD4				EN flange PN 40, suitable for EN 1092-1 type B1, raised face (RF)	_
				ED4				EN flange PN 40, suitable for EN 1092-1 type E, spigot	
				FD4				EN flange PN 40, suitable for EN 1092-1 type F, recess	
				GD4				EN flange PN 40, suitable for EN 1092-1 type D, groove	not with option WPA, RTA, PTA, P2_
Process conne	ection type			BD6				EN flange PN 100, suitable for EN 1092-1 type B1, raised face (RF)	see tables on page [45]
				ED6				EN flange PN 100, suitable for EN 1092-1 type E, spigot	
				FD6				EN flange PN 100, suitable for EN 1092-1 type F, recess	
				GD6				EN flange PN 100, suitable for EN 1092-1 type D, groove	
				BJ1				JIS flange 10K, JIS B 2220	not with option WPA, RTA, PTA, P2_
				BJ2				JIS flange 20K, JIS B 2220	see table on page [▶ 46] and following pages
				BP1				JPI flange class 150	not with option WPA, RTA,
				BP2				JPI flange class 300	PTA, P2_
				BP4				JPI flange class 500	see table on page [> 47] and
				HS4				Clamp process connection according to DIN 32676 series A	following pages not with option WPA, RTA, PTA, P2
				HS8				Clamp process connection according to DIN 32676 series C	not with process fluid temper- ature range 2
								(Tri-Clamp)	see tables on page [> 49]
				TG9				Process connection with internal thread G	not with option WPA, RTA, PTA, P2_
				ТТ9				Process connection with internal thread NPT	see tables on page [48] and following page
Soncor kousi-	a motorial			0				Stainless steel 1.4301/304, 1.4404/316L	-
Sensor housing	y material			1				Stainless steel 1.4404/316L	not with option SA

Model code	1.	. 2.	3.	4.	5.	6	ò.	7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
position									0							Standard: -50 – 150 °C (-58 – 302 °F)	-
Process fluid	tem	nperatu	re ran	ige					2							Mid-range: -50 – 260 °C (-58 – 500 °F)	not with design and housing A, E, J not with process connection type HS4, HS8
										E7						Liquid: 0.2 % maximum mass flow deviation D_{flat} , 4 g/l density deviation	not with transmitter U
										D7						Liquid: 0.15 % maximum mass flow deviation $D_{\text{flat}},4$ g/l density deviation	not with transmitter E
										D3						Liquid: 0.15 % maximum mass flow deviation D_{flat} 1 g/l density deviation	not with transmitter E not with option RTA not with option P2_
										C7						Liquid: 0.1 % maximum mass flow deviation D_{flat} 4 g/l density deviation	not with transmitter E
Mass flow and	d de	ensity a	iccura	асу						C3						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 1 g/l density deviation	not with transmitter E not with option RTA not with option P2_
										70						Gas: 0.75 % maximum mass flow deviation D_{flat}	not with transmitter U not with option CST, AC_, C52, VM
										50						Gas: 0.5 % maximum mass flow deviation D_{flat}	not with transmitter E not with option CST, AC_, C52, VM
											A					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2
											в					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor	not with option T
											E					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2 not with option T
Design and he	ousi	ing									F					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and long neck sensor	-
											J					Remote type stainless steel transmitter and standard neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21 not with option T
											к					Remote type stainless steel transmitter and long neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21

Model code	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
position											NNO	0			None	not with communication type and I/O JP, JQ, JR, JS
																not with option Q11
											KF2 ²	I			ATEX, explosion group IIC and IIIC	not with design and housing J, K
											KF22	2			ATEX, explosion group IIB and IIIC	-
											SF2	l			IECEx, explosion group IIC and IIIC	not with design and housing J, K not with option Q11
											SF22	2			IECEx, explosion group IIB and IIIC	not with option Q11
											GF2	1			EAC Ex, explosion group IIC and IIIC	not with design and housing J, K only with option VE or VR not with option Q11
											GF2	2			EAC Ex, explosion group IIB and IIIC	only with option VE or VR not with option Q11
											FF11				FM, groups A, B, C, D, E, F, G	not with cable entries 4
Ex approval											FF12	2			FM, groups C, D, E, F, G	not with option Y, Q11
											UF2	1			INMETRO, explosion group IIC and IIIC	not with design and housing J, K not with option Q11
											UF22	>			INMETRO, explosion group IIB and IIIC	not with option Q11
											NF2				NEPSI, explosion group IIC and IIIC	not with design and housing J, K only with option CN not with option Q11
											NF22	2			NEPSI, explosion group IIB and IIIC	only with option CN not with option Q11
											PF2 ²				Korea Ex, explosion group IIC and IIIC	not with design and housing J, K only with option KC not with option Q11
											PF22	2			Korea Ex, explosion group IIB and IIIC	only with option KC not with option Q11
												2			ANSI ½" NPT	
Cable entries												4			ISO M20x1.5	- not with Ex approval FF11 or FF12

Model code	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
													JA		1 active current output HART, 1 passive pulse or status output	
													JB		2 active current outputs one with HART, 2 passive pulse or status outputs	
													JC		2 active current outputs one with HART, 1 passive pulse or status output, 1 voltage-free status input	
													JD		1 active current output HART, 2 passive pulse or status outputs, 1 passive status output	
													JE		1 active current output HART, 2 passive pulse or status outputs, 1 voltage-free status input	not with option CGC, VM
													JF		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input	
													JG		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output, 1 voltage-free status input	
Communicatio	on type	and	I/O										JH		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 active current input	
													JJ		1 active current output HART, 2 passive pulse or status outputs, 1 active current input	
													JK		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 active current input	not with transmitter E
													JL		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 passive current input	
													JM		1 active current output HART, 2 passive pulse or status outputs, 1 passive current input	
													JN		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 passive current input	
													JP		2 passive current outputs one with HART, 1 passive pulse or status output	
													JQ		2 passive current outputs one with HART, 2 passive pulse or status outputs	not with Ex approval NN00
													JR		2 passive current outputs one with HART, 1 passive NAMUR pulse or status output	not with option CGC, MC2, MC3, VM
													JS		2 passive current outputs one with HART, 2 passive NAMUR pulse or status outputs	
													MO		Modbus output, 1 passive pulse or status output	not with option CGC, PS, BT, VM
													M2		Modbus output, 1 passive pulse or status output, 1 active current input	not with transmitter E, not with option PS, BT, VM
Communicatio	on type	and	I/O										МЗ		Modbus output, 2 passive pulse or status outputs	
													M4		Modbus output, 1 passive pulse or status output, 1 active pulse or status output	
													M5		Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor	not with option CGC , PS, BT, VM
													M6		Modbus output, 1 passive pulse or status output, 1 active current output	
													M7		Modbus output, 1 passive pulse or status output, 1 passive current input	not with transmitter E, not with option PS, BT, VM
Display														0	No display	not with transmitter U
2.opidy														1	With display	-

RC 12 14 15 1 2 3 4 5 6 7 8 9 10 11 13 Model code 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Restriction 1. 2. 3. 4. Description position not with accuracy D7, D3, C7, D2, C3, C2, 50 not with communication type and I/O JH, JJ, JK, JL, JM, E Essential (base function) JN, M2, M7 Transmitter not with option CST, AC_, CGC, C52, BT, VM not with accuracy E7, 70 U Ultimate (high function) not with display 0 Sensor N Nano Nominal mass flow : 0.37 t/h (14 lb/min) 15 Meter size Maximum mass flow: 0.6 t/h (22 lb/min) Measuring tubes: Ni alloy C-22/2.4602 Material wetted parts ĸ Process connections: stainless steel 1.4404/316L 1/4" 06 3/8" 08 15 DN15. 1/2" Process connection size 20 3/4" 25 DN25, 1" 40 DN40, 11/2" ASME flange class 150, suitable for ASME B16.5, raised BA1 face (RF) ASME flange class 300, suitable for ASME B16.5, raised BA2 face (RF) ASME flange class 600, suitable for ASME B16.5, raised BA4 face (RF) ASME flange class 600, suitable for ASME B16.5, ring joint CA4 (RJ) see tables on page [> 43] ASME flange class 900, suitable for ASME B16.5, raised BA5 face (RF) ASME flange class 900, suitable for ASME B16.5, ring joint CA5 (RJ) ASME flange class 1500, suitable for ASME B16.5, raised BA6 face (RF) ASME flange class 1500, suitable for ASME B16.5, ring joint CA6 (RJ) EN flange PN 40, suitable for EN 1092-1 type B1, raised BD4 face (RF) ED4 EN flange PN 40, suitable for EN 1092-1 type E, spigot FD4 EN flange PN 40, suitable for EN 1092-1 type F, recess not with option WPA, RTA, GD4 EN flange PN 40, suitable for EN 1092-1 type D, groove PTA, P2 EN flange PN 100, suitable for EN 1092-1 type B1, raised Process connection type BD6 see tables on page [> 45] face (RF) ED6 EN flange PN 100, suitable for EN 1092-1 type E, spigot FD6 EN flange PN 100, suitable for EN 1092-1 type F, recess GD6 EN flange PN 100, suitable for EN 1092-1 type D, groove not with option WPA, RTA. BJ1 JIS flange 10K, JIS B 2220 PTA, P2 see table on page [> 46] and BJ2 JIS flange 20K, JIS B 2220 following pages BP1 JPI flange class 150 not with option WPA, RTA, PTA, P2_ BP2 JPI flange class 300 see table on page [> 47] and BP4 JPI flange class 600 following pages not with option WPA, RTA, HS4 Clamp process connection according to DIN 32676 series A PTA, P2 not with process fluid temper-Clamp process connection according to DIN 32676 series C ature range 2 HS8 (Tri-Clamp) see tables on page [> 49]

10.4 Overview model code Nano 15

Sensor housing material

TG9

TT9

0

1

Stainless steel 1.4404/316L

Process connection with internal thread G

Process connection with internal thread NPT Stainless steel 1,4301/304, 1,4404/316L not with option WPA, RTA,

see tables on page [48] and following page

not with option SA

PTA, P2

Model code	1.	2.	3.	4.	5.	6.		7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
position																	
									0							Standard: -50 – 150 °C (-58 – 302 °F)	-
Process fluid	tempe	atur	e ran	ge					2							Mid-range: -50 – 260 °C (-58 – 500 °F)	not with design and housing A, E, J not with process connection
										E7						Liquid: 0.2 % maximum mass flow deviation $D_{\text{flat}},4$ g/l den-	type HS4, HS8 not with transmitter U
										D7						sity deviation Liquid: 0.15 % maximum mass flow deviation D _{flat} , 4 g/l den- sity deviation	not with transmitter E
										D3						Liquid: 0.15 % maximum mass flow deviation D_{flat} 1 g/l density deviation	not with transmitter E not with option RTA not with option P2_
										C7						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 4 g/l density deviation	not with transmitter E
Mass flow and	d dens	ty a	ccura	су						D2						Liquid: 0.15 % maximum mass flow deviation $D_{\text{flat}},0.5$ g/l density deviation	not with transmitter E
										C3						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 1 g/l density deviation	not with option RTA
										C2						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 0.5 g/l density deviation	not with option P2_
										70						Gas: 0.75 % maximum mass flow deviation D_{flat}	not with transmitter U not with option CST, AC_, C52, VM
										50						Gas: 0.5 % maximum mass flow deviation D_{flat}	not with transmitter E not with option CST, AC_, C52, VM
											A					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2 not with option T
											в					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor	-
											E					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2 not with option T
Design and h	ousing										F					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and long neck sensor	-
											J					Remote type stainless steel transmitter and standard neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21 not with option T
											к					Remote type stainless steel transmitter and long neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21

Model code	1.	2.	3.	4.	5.	6.	7.	8.	9.	10	11.	12.	13.	14.	Description	Restriction
position											NNO	0			None	not with communication type and I/O JP, JQ, JR, JS
																not with option Q11 not with design and housing
											KF2	1			ATEX, explosion group IIC and IIIC	J, K
											KF22	2			ATEX, explosion group IIB and IIIC	-
											SF2	1			IECEx, explosion group IIC and IIIC	not with design and housing J, K not with option Q11
											SF22	2			IECEx, explosion group IIB and IIIC	not with option Q11
											GF2	1			EAC Ex, explosion group IIC and IIIC	not with design and housing J, K only with option VE or VR not with option Q11
											GF2	2			EAC Ex, explosion group IIB and IIIC	only with option VE or VR not with option Q11
											FF1	1			FM, groups A, B, C, D, E, F, G	not with cable entries 4
Ex approval											FF12	2			FM, groups C, D, E, F, G	not with option Y, Q11
											UF2	1			INMETRO, explosion group IIC and IIIC	not with design and housing J, K
											UF2	2			INMETRO, explosion group IIB and IIIC	not with option Q11 not with option Q11
											NF2				NEPSI, explosion group IIC and IIIC	not with design and housing J, K only with option CN not with option Q11
											NF2	2			NEPSI, explosion group IIB and IIIC	only with option CN not with option Q11
											PF2 ⁻	1			Korea Ex, explosion group IIC and IIIC	not with design and housing J, K only with option KC not with option Q11
											PF22	2			Korea Ex, explosion group IIB and IIIC	only with option KC not with option Q11
												2			ANSI 1/2" NPT	-
Cable entries												4			ISO M20x1.5	not with Ex approval FF11 or FF12

Model code	1.	2.	3.	4.	5.	6.	7.	8.	. 9.	10).	11.	12.	13.	14.	Description	Restriction		
														JA		1 active current output HART, 1 passive pulse or status output			
														JB		2 active current outputs one with HART, 2 passive pulse or status outputs			
														JC		2 active current outputs one with HART, 1 passive pulse or status output, 1 voltage-free status input			
														JD		1 active current output HART, 2 passive pulse or status outputs, 1 passive status output			
														JE		1 active current output HART, 2 passive pulse or status outputs, 1 voltage-free status input	not with option CGC, VM		
														JF		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input			
														JG		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output, 1 voltage-free status input			
Communicatio	on type	and	I/O											JH		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 active current input			
														IJ		1 active current output HART, 2 passive pulse or status outputs, 1 active current input			
														JK		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 active current input	not with transmitter E		
														JL		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 passive current input			
														JM		1 active current output HART, 2 passive pulse or status outputs, 1 passive current input			
														JN		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 passive current input			
														JP		2 passive current outputs one with HART, 1 passive pulse or status output			
														JQ		2 passive current outputs one with HART, 2 passive pulse or status outputs	not with Ex approval NN00		
														JR		2 passive current outputs one with HART, 1 passive NAMUR pulse or status output	not with option CGC, MC2, MC3, VM		
														JS		2 passive current outputs one with HART, 2 passive NAMUR pulse or status outputs			
														M0		Modbus output, 1 passive pulse or status output	not with option CGC, PS, BT, VM		
														M2		Modbus output, 1 passive pulse or status output, 1 active current input	not with transmitter E, not with option PS, BT, VM		
Communicatio	on type	and	I/O											M3		Modbus output, 2 passive pulse or status outputs			
														M4		Modbus output, 1 passive pulse or status output, 1 active pulse or status output	act with partian QQQ_DQ		
														M5		Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor	not with option CGC , PS, BT, VM		
														M6		Modbus output, 1 passive pulse or status output, 1 active current output			
														M7		Modbus output, 1 passive pulse or status output, 1 passive current input	not with transmitter E, not with option PS, BT, VM		
															0	No display	not with transmitter U		

10.5 Overview model code Nano 20

				RC		1 2	3	4	5	6	–	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Model code position	1. 2.	3.	4. {	5.	6. 7	7. 8.	9. 1	10. 11	. 12	2. 13.	. 14.	Description		Restriction				
														not with accuracy D7, D3, C7, D2, C3, C2, 50				
Transmitter	E											Essential (base function)		not with communication type and I/O JH, JJ, JK, JL, JM, JN, M2, M7				
														not with option CST, AC_, CGC, C52, BT, VM				
	U											Ultimate (high function)		not with accuracy E7, 70 not with display 0				
Sensor	N											Nano		-				
Meter size	:	20										Nominal mass flow : 0.95 t/h (35 lb/min) Maximum mass flow: 1.5 t/h (55 lb/min)		-				
Material wetter	d parts		к									Measuring tubes: Ni alloy C-22/2.4602 Process connections: stainless steel 1.4404/316L		-				
			(06								1/4"						
			(08								3/8"						
Process conne	ection size		·	15								DN15, ½"		_				
. 100000 001110	50001 BIZC		1	20								3/4"						
			1	25								DN25, 1"						
			4	40								DN40, 11/2"						
					BA1							ASME flange class 150, suitable for ASME B16.5, raise face (RF)	ł					
					BA2							ASME flange class 300, suitable for ASME B16.5, raise face (RF)	ł					
					BA4							ASME flange class 600, suitable for ASME B16.5, raise face (RF)	t					
					CA4							ASME flange class 600, suitable for ASME B16.5, ring j (RJ)	oint	see tables on page [> 43]				
					BA5							ASME flange class 900, suitable for ASME B16.5, raise face (RF)						
					CA5							ASME flange class 900, suitable for ASME B16.5, ring j (RJ)	oint					
					BA6							ASME flange class 1500, suitable for ASME B16.5, rais face (RF)	ed					
					CA6							ASME flange class 1500, suitable for ASME B16.5, ring (RJ)	e class 1500, suitable for ASME B16.5, ring joint					
					BD4							EN flange PN 40, suitable for EN 1092-1 type B1, raised face (RF)	1					
					ED4							EN flange PN 40, suitable for EN 1092-1 type E, spigot						
					FD4							EN flange PN 40, suitable for EN 1092-1 type F, recess						
					GD4							EN flange PN 40, suitable for EN 1092-1 type D, groove		not with option WPA, RTA, PTA, P2_				
Process conne	ection type				BD6							EN flange PN 100, suitable for EN 1092-1 type B1, raise face (RF)	ed	see tables on page [> 45]				
				Ī	ED6							EN flange PN 100, suitable for EN 1092-1 type E, spigo	:					
				Ī	FD6							EN flange PN 100, suitable for EN 1092-1 type F, reces	5					
				Ī	GD6							EN flange PN 100, suitable for EN 1092-1 type D, groov	е					
					BJ1							JIS flange 10K, JIS B 2220		not with option WPA, RTA, PTA, P2_				
					BJ2							JIS flange 20K, JIS B 2220		see table on page [46] and following pages				
					BP1							JPI flange class 150		not with option WPA, RTA,				
				h	BP2							JPI flange class 300		PTA, P2_				
				-	BP4							JPI flange class 600		see table on page [▶ 47] and following pages				
					HS4							Clamp process connection according to DIN 32676 seri	es A	not with option WPA, RTA, PTA, P2_				
				HS8							Clamp process connection according to DIN 32676 seri (Tri-Clamp)	es C	not with process fluid temper- ature range 2					
														see tables on page [> 49]				
				TG9 F								Process connection with internal thread G		not with option WPA, RTA, PTA, P2_				
					TT9							Process connection with internal thread NPT		see tables on page [48] and following page				
Sensor housing	g material				0							Stainless steel 1.4301/304, 1.4404/316L		-				
	-				1	1						Stainless steel 1.4404/316L		not with option SA				

Model code	1.	2.	3.	4.	5.	6.		7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction	
position																		
									0							Standard: -50 – 150 °C (-58 – 302 °F)	-	
Process fluid	tempe	atur	e ran	ge					2							Mid-range: -50 – 260 °C (-58 – 500 °F)	not with design and housing A, E, J not with process connection	
										E7						Liquid: 0.2 % maximum mass flow deviation $D_{\text{flat}},4$ g/l den-	type HS4, HS8 not with transmitter U	
									D7						sity deviation Liquid: 0.15 % maximum mass flow deviation D _{flat} , 4 g/l den- sity deviation	not with transmitter E		
										D3						Liquid: 0.15 % maximum mass flow deviation D_{flat} 1 g/l density deviation	not with transmitter E not with option RTA not with option P2_	
										C7						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 4 g/l density deviation	not with transmitter E	
Mass flow and	ss flow and density accuracy									D2						Liquid: 0.15 % maximum mass flow deviation $D_{\text{flat}},0.5$ g/l density deviation	not with transmitter E	
										C3						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 1 g/l density deviation	not with option RTA	
										C2						Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},$ 0.5 g/l density deviation	not with option P2_	
										70						Gas: 0.75 % maximum mass flow deviation D_{flat}	not with transmitter U not with option CST, AC_, C52, VM	
										50						Gas: 0.5 % maximum mass flow deviation D_{flat}	not with transmitter E not with option CST, AC_, C52, VM	
											A					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2 not with option T	
											в					Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor	-	
Design and housing							E Remote type with "corrosion protection coating" coated alu minum transmitter housing and standard neck sensor					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and standard neck sensor	not with process fluid temper- ature range 2 not with option T					
								F					Remote type with "corrosion protection coating" coated alu- minum transmitter housing and long neck sensor	-				
						J					Remote type stainless steel transmitter and standard neck sensor	not with Ex approval KF21, SF21, GF21, UF21, NF21, PF21 not with option T						
						К				K Remote type stainless steel transmitter and long neck sen- sor								

Model code	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
position											NNO	0			None	not with communication type and I/O JP, JQ, JR, JS
																not with option Q11
											KF2 ²				ATEX, explosion group IIC and IIIC	not with design and housing J, K
											KF22	2			ATEX, explosion group IIB and IIIC	-
											SF2 ²				IECEx, explosion group IIC and IIIC	not with design and housing J, K not with option Q11
											SF22	>			IECEx, explosion group IIB and IIIC	not with option Q11
											GF2				EAC Ex, explosion group IIC and IIIC	not with design and housing J, K only with option VE or VR
																not with option Q11
											GF2	2			EAC Ex, explosion group IIB and IIIC	only with option VE or VR
											012	-				not with option Q11
											FF11				FM, groups A, B, C, D, E, F, G	not with cable entries 4
Ex approval											FF12	2			FM, groups C, D, E, F, G	not with option Y, Q11
											UF2 ⁻	1			INMETRO, explosion group IIC and IIIC	not with design and housing J, K
																not with option Q11
											UF22	2			INMETRO, explosion group IIB and IIIC	not with option Q11
											NF2 ⁻	1			NEPSI, explosion group IIC and IIIC	not with design and housing J, K only with option CN not with option Q11
											NF22	2			NEPSI, explosion group IIB and IIIC	only with option CN not with option Q11
											PF2				Korea Ex, explosion group IIC and IIIC	not with design and housing J, K only with option KC not with option Q11
								PF22	2			Korea Ex, explosion group IIB and IIIC	only with option KC not with option Q11			
												2			ANSI ½" NPT	-
Cable entries												4			ISO M20x1.5	not with Ex approval FF11 or FF12

Model code	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	Description	Restriction
													JA		1 active current output HART, 1 passive pulse or status output	
													JB		2 active current outputs one with HART, 2 passive pulse or status outputs	
													JC		2 active current outputs one with HART, 1 passive pulse or status output, 1 voltage-free status input	
													JD		1 active current output HART, 2 passive pulse or status outputs, 1 passive status output	
													JE		1 active current output HART, 2 passive pulse or status outputs, 1 voltage-free status input	not with option CGC, VM
													JF		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input	
													JG		1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output, 1 voltage-free status input	
Communicatio	n type	and	1/0										JH		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 active current input	
													JJ		1 active current output HART, 2 passive pulse or status outputs, 1 active current input	
													JK		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 active current input	not with transmitter E
													JL		1 active current output HART, 1 passive pulse or status output, 1 passive current output, 1 passive current input	
													JM		1 active current output HART, 2 passive pulse or status outputs, 1 passive current input	
													JN		1 active current output HART, 1 passive pulse or status output, 1 voltage-free status input, 1 passive current input	
													JP		2 passive current outputs one with HART, 1 passive pulse or status output	
													JQ		2 passive current outputs one with HART, 2 passive pulse or status outputs	not with Ex approval NN00
													JR		2 passive current outputs one with HART, 1 passive NAMUR pulse or status output	not with option CGC, MC2, MC3, VM
													JS		2 passive current outputs one with HART, 2 passive NAMUR pulse or status outputs	
													M0		Modbus output, 1 passive pulse or status output	not with option CGC, PS, BT, VM
													M2		Modbus output, 1 passive pulse or status output, 1 active current input	not with transmitter E, not with option PS, BT, VM
Communicatio	n type	and	I/O										М3		Modbus output, 2 passive pulse or status outputs	
													M4		Modbus output, 1 passive pulse or status output, 1 active pulse or status output	
													M5		Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor	not with option CGC , PS, BT, VM
													M6		Modbus output, 1 passive pulse or status output, 1 active current output	
													M7		Modbus output, 1 passive pulse or status output, 1 passive current input	not with transmitter E, not with option PS, BT, VM
Display														0	No display With display	not with transmitter U

10.6 Overview options

Option category	Options	Description	Restriction		
Additional nameplate information	BG	Nameplate with customer device location identifica- tion	_		
Presetting of customer parameters	PS	Presetting according to customer parameters	not with communica- tion type and I/O M_		
	PJ	Delivery to Japan			
	CN	Delivery to China	not with option QR		
Country-specific	KC	Delivery to Korea			
delivery	VE	Delivery to EAC area	-		
	VR	Delivery to EAC area and Russia Pattern Approval marking	-		
Country-specific appli-	Q11	PESO approval delivery	only with Ex proof KF2_		
cation	QR	Primary calibration valid in Russia, including certifi- cate	only with option VE or VR		
	AC0	Advanced concentration measurement, customer set- tings			
	AC1	Advanced concentration measurement, one default data set	_		
Concentration and pe-	AC2	Advanced concentration measurement, two default data sets	not with transmitter type E		
troleum measurement	AC3	Advanced concentration measurement, three default data sets	not with mass flow and density accuracy 70,		
	AC4	Advanced concentration measurement, four default data sets	50		
	CST	Standard concentration measurement	-		
	C52	Net Oil Computing (NOC) following API standard	-		
Mass flow calibration	K2	Customer-specific 5-point mass flow calibration with factory calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order.			
Mass now calibration	K5	Customer-specific 10-point mass flow calibration with DAkkS calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order.	-		
Accordance with terms	P2	Declaration of compliance with the order 2.1 accord- ing to EN 10204	-		
of order	P3	Quality Inspection Certificate (Inspection Certificate 3.1 according to EN 10204)	not with option P10, P11, P12, P13, P21, P22		
Material certificates	P6	Certificate of Marking Transfer and Raw Material Cer- tificates (Inspection Certificate 3.1 according to EN 10204)	not with option P10, P11, P12, P13, P21, P22		
Pressure testing	P8	Hydrostatic Pressure Test Certificate (Inspection Certificate 3.1 according to EN 10204)	not with option P10, P12, P13, P14, P21		
Surfaces free of oil and grease	H1	Degreasing of wetted surfaces according to ASTM G93-03 (Level C), including test report	_		

Options	Description	Restriction
	WPS according to DIN EN ISO 15609-1	
WP	WPQR according to DIN EN ISO 15614-1	not with option P13,
	WQC according to DIN EN 287-1 or DIN EN ISO 6906-4	P14, P2_
WPA	Welding procedures and Certificate according to ASME IX	only with process connection type BA_ or CA_ not with option P12, P13, P14, P2_
L2	The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards, including a list of working standards used for calibration. Language: English/Japanese	
L3	The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards, including a list of primary standards to which the delivered product is traceable. Language: English/Japanese	_
L4	The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards and that the calibration system of Rota Yokogawa is traceable to national standards. Lan- guage: English/Japanese	
	X-ray inspection of flange weld seam according to	not with option P2_
RT	DIN EN ISO 17636-1/B Evaluation according to AD 2000 HP 5/3 and DIN EN ISO 5817/C, including certificate	in case of mass flow and density accuracy C2, C3, D2, D3 only one-sided
RTA	X-ray test according to ASME V	not with option P12, P13, P14, P2_ not with mass flow and density accuracy C2, C3, D2, D3 only with process connection type BA_ or CA_
PT	Dye penetration test of process connection weld seams according to DIN EN ISO 3452-1, including certificate	not with option P12, P13, P2_
PTA	Dye Penetrant test of flange welding according to ASME V	only with process connection type BA_ or CA_ not with option P12,
	WP WPA L2 L3 L4 RT RT RTA PT	WP WPQR according to DIN EN ISO 15614-1 WQC according to DIN EN 287-1 or DIN EN ISO 6906-4 WPA WPA Welding procedures and Certificate according to ASME IX L2 The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards, including a list of working standards used for calibration. Language: English/Japanese L3 The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards, including a list of primary standards to which the delivered product is traceable. Language: English/Japanese L4 The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards to which the delivered product is traceable. Language: English/Japanese RT The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards. Language: English/Japanese RT X-ray inspection of flange weld seam according to DIN EN ISO 17636-1/B Evaluation according to AD 2000 HP 5/3 and DIN EN ISO 5817/C, including certificate RTA X-ray test according to ASME V PT Dye penetration test of process connection weld seams according to DIN EN ISO 3452-1, including certificate Dye Penetrant test of flange welding according to

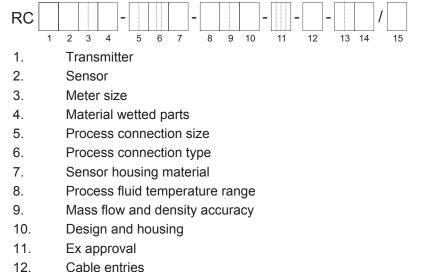
Option category	Options	Description	Restriction		
	T10	Insulation			
	T21	Insulation and heat tracing, $\frac{1}{2}$ " ASME class 150, raised face (RF)			
	T22	Insulation and heat tracing, ¹ / ₂ " ASME class 300, raised face (RF)	not with design and housing A, E, J		
Insulation and heat tracing	T26	Insulation and heat tracing, DN15, PN40	not with option PD,		
licening	T31	Insulation, heat tracing with ventilation, ½" ASME class 150, raised face (RF)	MC_		
	T32	Insulation, heat tracing with ventilation, ½" ASME class 300, raised face (RF)			
	T36	Insulation, heat tracing with ventilation, DN15, PN40	_		
Fixing device	PD	2" fixing device for sensor	not with option MC_, T		
		Measurement of the total transported energy content	not with transmitter type E		
Measurement of heat quantity	CGC	of a fuel in connection with a sensor for determining the fuel's calorific value (e.g. a gas chromatograph, not included in scope of delivery)	only with communica- tion type and I/O JH, JJ, JK, JL, JM, JN, M2 M7		
	L000	without standard connecting cable			
	L005	5 meter (16.4 ft) remote connecting cable terminated std. gray / Ex blue			
Connecting cable type	L010	10 meter (32.8 ft) remote connecting cable terminated std. gray / Ex blue	n at with a sting or O		
and length	L015	15 meter (49.2 ft) remote connecting cable terminated std. gray / Ex blue	not with option mC_		
	L020	20 meter (65.6 ft) remote connecting cable terminated std. gray / Ex blue	_		
	L030	30 meter (98.4 ft) remote connecting cable terminated std. gray / Ex blue			
	Y000	without fire retardant connecting cable			
	Y005	5 meter (16.4 ft) remote fire retardant connecting cable not terminated	-		
Connecting cable type	Y010	10 meter (32.8 ft) remote fire retardant connecting cable not terminated	not with Ex approval		
and length	Y015	15 meter (49.2 ft) remote fire retardant connecting cable not terminated	FF11, FF12		
	Y020	20 meter (65.6 ft) remote fire retardant connecting cable not terminated			
	Y030	30 meter (98.4 ft) remote fire retardant connecting cable not terminated			

Nano

Ordering information

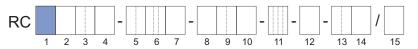
Option category	Options	Description	Restriction
	MC2	Marine approval according to DNV GL piping class 2	not with communica- tion type and I/O JP, JQ, JR, JS, meter size Nano 06, Nano 08
Marine Approval			not with option PD,
			Τ
	MC3	Marine approval according to DNV/OL piping close 2	only with option Y
	IVIC 3	Marine approval according to DNV GL piping class 3	in case of thermal oil applications option RT or RTA is mandatory
		Combination of:	
		 P3: Quality Inspection Certificate 	not with option P3, P6,
	P10	 P6: Certificate of Marking Transfer and Raw Ma- terial Certificates 	P8
		 P8: Hydrostatic Pressure Test Certificate 	
		Combination of:	
		 P3: Quality Inspection Certificate 	
	P11	 P6: Certificate of Marking Transfer and Raw Ma- terial Certificates 	not with option P3, P6 PM
		 PM: Positive Material Identification of wetted parts 	
		Combination of:	
		 P3: Quality Inspection Certificate 	
	P12	 P6: Certificate of Marking Transfer and Raw Ma- terial Certificates 	not with option P3, P6 P8, PT, WPA, RTA,
Combined certificate		 PT: Dye penetration test according to DIN EN ISO 3452-1 	ΡΤΑ
		 P8: Hydrostatic Pressure Test Certificate 	
		Combination of:	
		 P3: Quality Inspection Certificate 	
		 P6: Certificate of Marking Transfer and Raw Ma- terial Certificates 	
	P13	 PT: Dye penetration test according to DIN EN ISO 3452-1 	not with option P3, P6 P8, WP, PM, PT, WP/
		 PM: Positive Material Identification of wetted parts 	RTA, PTA
		 P8: Hydrostatic Pressure Test Certificate 	
		WP: Welding certificates	
		Combination of:PM: Positive Material Identification of wetted	
	P14	parts	not with option P8, WP, PM, WPA, RTA,
		 P8: Hydrostatic Pressure Test Certificate WP: Welding certificates 	PTA

Option category	Options	Description	Restriction
	P20	 Combination of: PTA: Dye Penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V 	not with mass flow and density accuracy D3, D2, C3, C2 only with process connection type BA_ or CA_ not with option WP, WPA, RT, RTA, PT, PTA
Combined certificate	P21	 Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P8: Hydrostatic Pressure Test Certificate PTA: Dye Penetrant test of flange welding according ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V 	not with mass flow and density accuracy D3, D2, C3, C2 only with process connection type BA_ or CA_ not with option P3, P6, P8, WP, WPA, RT, RTA, PT, PTA
	P22	 Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates PM: Positive Material Identification of wetted parts PTA: Dye Penetrant test of flange welding according ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V 	not with mass flow and density accuracy D3, D2, C3, C2 only with process connection type BA_ or CA_ not with option P3, P6, WP, WPA, RT, RTA, PM, PT, PTA
Positive Material Identification of wetted parts	РМ	Positive Material Identification of wetted parts, includ- ing certificate (Inspection Certificate 3.1 according to EN 10204)	not with option P11, P13, P14, P22
Tube health check	тс	Tube health check	-
Batching function	BT	Batching and filling function	not with transmitter type E only with communica- tion type and I/O J_
Viscosity function	VM	Viscosity computing function for liquids	not with transmitter type E not with mass flow and density accuracy 70, 50 only with communica- tion type and I/O JH, JJ, JK, JL, JM, JN



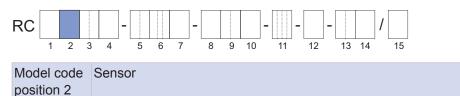
10.7 Model code

The model code of the Rotamass Total Insight is explained below.


Items 1 through 14 are mandatory entries and must be specified at the time of ordering.

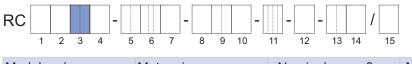
Device options (item 15) can be selected and specified individually by separating them with slashes.

- Cable entries
- 13. Communication type and I/O
- 14. Display
- 15. Options

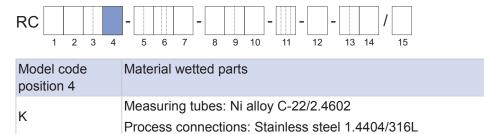

10.7.1 Transmitter

Model code position 1	Transmitter
E	Essential
U	Ultimate

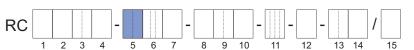
10.7.2 Sensor


Ν

Na	no				



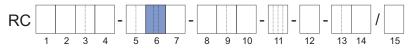
10.7.3 Meter size



Model code	Meter size	Nominal mass flow	Maximum mass flow
position 3		in t/h (lb/min)	in t/h (lb/min)
06	06	0.021 (0.77)	0.04 (1.5)
08	08	0.045 (1.7)	0.094 (3.5)
10	10	0.17 (6.2)	0.3 (11)
15	15	0.37 (14)	0.6 (22)
20	20	0.95 (35)	1.5 (55)

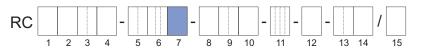
10.7.4 Material wetted parts

10.7.5 Process connection size


Model code position 5	Process connection size
6	1/4"
8	3/8"
15	DN15, ½"
20	3/4"
25	DN25, 1"
40	DN40, 11/2"

0

Available sizes depend on the actual process connection, see also chapter *Process connections, dimensions and weights of sensor* [> 41].

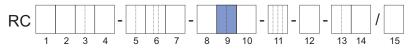


10.7.6 Process connection type

Model code	Туре	Process connections		
position 6				
BA1		ASME flange class 150, raised face (RF)		
BA2		ASME flange class 300, raised face (RF)		
BA4		ASME flange class 600, raised face (RF)		
CA4	Flanges suitable for	ASME flange class 600, ring joint (RJ)		
BA5	ASME B16.5	ASME flange class 900, raised face (RF)		
CA5		ASME flange class 900, ring joint (RJ)		
BA6		ASME flange class 1500, raised face (RF)		
CA6		ASME flange class 1500, ring joint (RJ)		
BD4		EN flange PN40, type B1, raised face (RF)		
ED4		EN flange PN40, type E, with spigot		
FD4		EN flange PN40, type F, with recess		
GD4	Flange suitable for	EN flange PN40, type D, with groove		
BD6	EN 1092-1	EN flange PN100, type B1, raised face (RF)		
ED6		EN flange PN100, type E, with spigot		
FD6		EN flange PN100, type F, with recess		
GD6		EN flange PN100, type D, with groove		
BJ1	Flange suitable for	JIS flange 10K		
BJ2	JIS B 2220	JIS flange 20K		
BP1		JPI flange class 150		
BP2	Flange suitable for JPI	JPI flange class 300		
BP4		JPI flange class 600		
HS4	Clamped	Clamp process connection according to DIN 32676 series A		
HS8	connections	Clamp process connection according to DIN 32676 series C (Tri-Clamp)		
TG9	Process connections	Process connection with internal thread G		
TT9	with internal thread	Process connection with internal thread NPT		

10.7.7 Sensor housing material

Model code position 7	Housing material
0	Stainless steel 1.4301/304, 1.4404/316L
1	Stainless steel 1.4404/316L

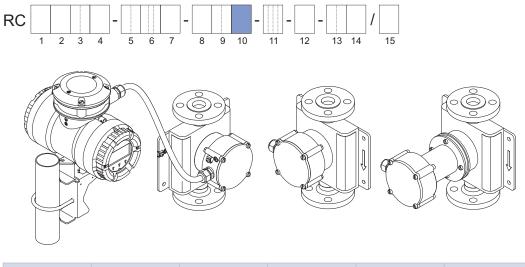


10.7.8 Process fluid temperature range

RC		9 10 11 12 13 14 15
Model code position 8	Temperature range	Process fluid temperature range
0	Standard	-50 – 150 °C (-58 – 302 °F)
2	Mid-range	-50 – 260 °C (-58 – 500 °F)

For temperature range limits, see chapter Process fluid temperature range [> 27].

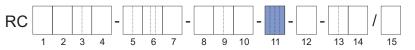
10.7.9 Mass flow and density accuracy



Fluid	Model code	Maximum	deviation	Model code
	position 9	Mass flow D _{flat} in %	Density in g/l	position 1
	E9		20	E
	E8	0.2	8	E
	E7		4	E
	D9		20	U
	D8	0.15	8	U
Liquid	D7		4	U
Liquid	D3		1	U
	D2		0.5	U
	C8		8	U
	C7	0.1	4	U
	C3	0.1	1	U
	C2		0.5	U
Caa	70	0.75	_	E
Gas	50	0.5	_	U

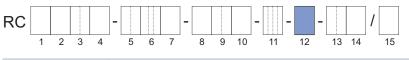
Devices with value _2 in model code position 9 receive an additional density calibration with a corresponding certificate.

10.7.10 Design and housing



Model code position 10	Design type	Transmitter housing material	Transmitter housing coating	Sensor terminal box material	Long neck
A		Aluminum	Standard		No
В			coating	Stainless	Yes
E			Corrosion		No
F	Remote type		protection coating	steel	Yes
J		Stainless Steel	—		No
К			_]	Yes

A connecting cable is required to connect the sensor with the transmitter. It can be selected in various lengths as a device option, see Connecting cable length.



10.7.11 Ex approval


Model code position 11	Ex approval
NN00	None
KF21	ATEX, explosion group IIC and IIIC
KF22	ATEX, explosion group IIB and IIIC
SF21	IECEx, explosion group IIC and IIIC
SF22	IECEx, explosion group IIB and IIIC
FF11	FM, group A, B, C, D, E, F, G
FF12	FM, group C, D, E, F, G
GF21	EAC Ex, explosion group IIC and IIIC
GF22	EAC Ex, explosion group IIB and IIIC
UF21	INMETRO, explosion group IIC and IIIC
UF22	INMETRO, explosion group IIB and IIIC
NF21	NEPSI, explosion group IIC and IIIC
NF22	NEPSI, explosion group IIB and IIIC
PF21	Korea Ex, explosion group IIC and IIIC
PF22	Korea Ex, explosion group IIB and IIIC

10.7.12 Cable entries

Model code position 12	Cable entries
2	ANSI 1/2" NPT
4	ISO M20x1.5

10.7.13 Communication type and I/O

HART I/O

Model code	Connection terminal assignment					
position 13	I/O1 +/-	I/O2 +/-	I/O3 +/-	I/O4 +/-	WP	
JA	lout1	P/Sout1			Write protect	
	Active	Passive	_	-	Write-protect	
JB	lout1	P/Sout1	P/Sout2	lout2	Write protect	
JD	Active	Passive	Passive	Active	Write-protect	
JC	lout1	P/Sout1	Sin	lout2	Write-protect	
30	Active	Passive	311	Active	white-protect	
JD	lout1	P/Sout1	Sout	P/Sout2	Write-protect	
30	Active	Passive	Passive	Passive	white-protect	
JE	lout1	P/Sout1	Sin	P/Sout2	Write-protect	
	Active	Passive	011	Passive	white-protect	

nosition 12		terminal assign				
position 13	I/O1 +/-	I/O2 +/-	I/O3 +/-	I/O4 +/-	WP	
				P/Sout2		
JF	lout1	P/Sout1	Sin	Active	Write-prote	
01	Active	Passive		Internal pull- up resistor		
	lout1	P/Sout1	Cin	P/Sout2	Muito proto	
JG	Active	Passive	Sin	Active	Write-prote	
JH	lout1	P/Sout1	lout2	lin	Mrita proto	
JП	Active	Passive	Passive	Active	Write-prote	
	lout1	P/Sout1	P/Sout2	lin	Murito proto	
JJ	Active	Passive	Passive	Active	Write-prote	
	lout1	P/Sout1	Q:n	lin		
JK	Active	Passive	Sin	Active	Write-prote	
	lout1	P/Sout1	lout2	lin		
JL	Active	Passive	Passive	Passive	Write-prote	
15.4	lout1	P/Sout1	P/Sout2	lin		
JM	Active	Passive	Passive	Passive	Write-prote	
	lout1	P/Sout1	C in	lin		
JN	Active	Passive	Sin	Passive	Write-prote	
lout2 An	alog current o alog current i	output	RT communica	tion		
lout2 An lin An P/Sout1 Pu P/Sout2 Pu	alog current o	output nput output	₹T communica	tion		
lout2 An lin An P/Sout1 Pu P/Sout2 Pu Sin Sta	alog current o alog current i ilse or status ilse or status	output nput output	₹T communica	tion		
lout2 An lin An P/Sout1 Pu P/Sout2 Pu Sin Sta	alog current o alog current i ilse or status ilse or status atus input atus output	output nput output		tion		
lout2 An lin An P/Sout1 Pu P/Sout2 Pu Sin Sta Sout Sta	halog current of halog current i lise or status lise or status atus input atus output Connection	output nput output output	nment	tion I/O4 +/-	WP	
lout2 An lin An P/Sout1 Pu P/Sout2 Pu Sin Sta Sout Sta Model code position 13	halog current of halog current i lise or status lise or status atus input atus output Connection	output nput output output terminal assign	nment			
lout2 An lin An P/Sout1 Pu P/Sout2 Pu Sin Sta Sout Sta Model code	alog current of alog current i alse or status alse or status atus input atus output Connection I/O1 +/-	terminal assign	nment I/O3 +/-		WP Write-prote	
lout2 An lin An P/Sout1 Pu Sin Sta Sout Sta Model code position 13	alog current of alog current i ilse or status ilse or status atus input atus output Connection I/O1 +/- Iout1	terminal assign I/O2 +/- P/Sout1	nment I/O3 +/- Iout2		Write-prote	
lout2 An lin An P/Sout1 Pu P/Sout2 Pu Sin Sta Sout Sta Model code position 13	alog current of alog current i ilse or status ilse or status atus input atus output Connection I/O1 +/- Iout1 Passive	terminal assign I/O2 +/- P/Sout1 Passive	nment I/O3 +/- Iout2 Passive	I/O4 +/- _		
lout2 An lin An P/Sout1 Pu Sin Sta Sout Sta Model code position 13	alog current of alog current i alse or status atus input atus output Connection I/O1 +/- Iout1 Passive Iout1	terminal assign 1/O2 +/- P/Sout1 P/Sout1 P/Sout1	nment I/O3 +/- Iout2 Passive Iout2	I/O4 +/- - P/Sout2	Write-prote	

lout2 Analog current output

P/Sout1 Pulse or status output

P/Sout2 Pulse or status output

Intrinsically safe outputs are only available in combination with selecting Ex approval of the device, see chapter *Ex approval* [> 103].

HART I/O, intrinsically safe

Modbus I/O

Model	Connection terminal assignment							
code position 13	I/O1 +/-	I/O2 +/-	I/O3 +	I/O3 -	I/O4 +	I/O4 -	WP	
M0	_	P/Sout1 Passive	-	Modbus C	Modbus B	Modbus A	Write- protect	
M2	lin Active	P/Sout1 Passive	_	Modbus C	Modbus B	Modbus A	Write- protect	
M3	P/Sout2 Passive	P/Sout1 Passive	_	Modbus C	Modbus B	Modbus A	Write- protect	
M4	P/Sout2 Active	P/Sout1 Passive	_	Modbus C	Modbus B	Modbus A	Write- protect	
M5	P/Sout2 Active Internal pull-up resistor	P/Sout1 Passive	_	Modbus C	Modbus B	Modbus A	Write- protect	
M6	lout1 Active	P/Sout1 Passive	_	Modbus C	Modbus B	Modbus A	Write- protect	
M7	lin Passive	P/Sout1 Passive	_	Modbus C	Modbus B	Modbus A	Write- protect	

lout Analog current output, no HART

lin Analog current input

P/Sout1 Pulse or status output

P/Sout2 Pulse or status output

10.7.14 Display

 \bigcirc

The display unit includes a slot for the microSD card.

Model code position 14	Display
0	Without display
1	With display

Devices without a display are available for Essential transmitters only (value E in model code position 1).

10.8 Options

Additional device options that can be combined may be selected; they are listed sequentially in model code position 15. In this case, each device option is preceded by a slash.

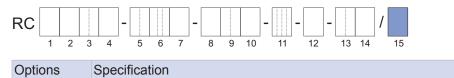
The following device options are possible:

- Connecting cable length, see chapter Connecting cable length.
- Customer-specific adaptation of the nameplate, see chapter Additional nameplate information [▶ 107].
- Flow meter presetting with customer parameters, see chapter *Presetting of customer* parameters [▶ 108].
- Concentration and petroleum measurement, see chapter Concentration and petroleum measurement [> 108].
- Batching function, see chapter Batching function [> 108].
- Viscosity function, see chapter Viscosity function [> 108].
- Insulation and heat tracing, see chapter Insulation and heat tracing [> 109].
- Certificates to be supplied, see chapter Certificates [> 109], e.g.:
 - Positive Material Identification of wetted parts, see chapter Certificates [> 109].
 - X-ray inspection of flange weld seam, see chapter Certificates [> 110].
- Country -specific delivery Country-specific delivery [> 112].
- Country -specific application Country-specific application [▶ 112].
- Tube health check, see chapter Tube health check [> 112].
- Fixing device for sensor, see chapter Fixing device [> 113].
- Measurement of heat quantity, see chapter Measurement of heat quantity [> 113].
- Marine type approval, see chapter Marine Approval [> 114].

10.8.1 Connecting cable type and length

When ordering the remote type it is mandatory to select one of the below shown connecting cable lengths.

It is possible to order cables with higher length than the maximum cable length and termination kits separately . For this purpose please check the "Customers Maintenance Parts List" (Ref.: CMPL 01U10B00-00EN-R) or consult our Service team.

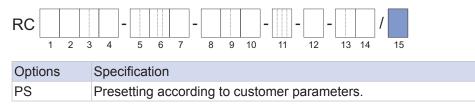

	2 3 4 5 6 7 8 9 10 11 12 13 14 15
Options	Specification
L000	without standard connecting cable ¹⁾
L005	5 meter (16.4 ft) remote connecting cable terminated std. gray / Ex blue
L010	10 meter (32.8 ft) remote connecting cable terminated std. gray / Ex blue
L015	15 meter (49.2 ft) remote connecting cable terminated std. gray / Ex blue
L020	20 meter (65.6 ft) remote connecting cable terminated std. gray / Ex blue
L030	30 meter (98.4 ft) remote connecting cable terminated std. gray / Ex blue
Y000	without fire retardant connecting cable ¹⁾
Y005	5 meter (16.4 ft) remote fire retardant connecting cable, not terminated
Y010	10 meter (32.8 ft) remote fire retardant connecting cable, not terminated
Y015	15 meter (49.2 ft) remote fire retardant connecting cable, not terminated
Y020	20 meter (65.6 ft) remote fire retardant connecting cable, not terminated
Y030	30 meter (98.4 ft) remote fire retardant connecting cable, not terminated
	·

¹⁾ Even without cables, it is necessary to select this option, because the device name plate shows the allowed ambient temperature depending on the selected cable type (see chapter $[\mathbb{P} 36]$).

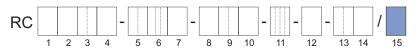
Fire retardant cable is mandatory for DNV GL type approval (Options MC2 and MC3). The minimum permissible ambient temperature for the two cable types differs (see chapter *Allowed ambient temperature for sensor* [> 36]). The cable type intended to be used needs to be indicated (with option L000 or Y000) even if connecting cable is ordered separately.

10.8.2 Additional nameplate information

BG


Name	plate with custome	r device location	identification
------	--------------------	-------------------	----------------

This marking (Tag No.) must be provided by the customer at the time the order is placed.



10.8.3 Presetting of customer parameters

Rotamass flow meters can be preconfigured with customer-specific data.

10.8.4 Concentration and petroleum measurement

Options	Specification
CST	Standard concentration measurement
AC0	Advanced concentration measurement, customer settings
AC1	Advanced concentration measurement, one default data set
AC2	Advanced concentration measurement, two default data sets
AC3	Advanced concentration measurement, three default data sets
AC4	Advanced concentration measurement, four default data sets
C52	Net Oil Computing (NOC) following API standard

These device options are not available in combination with gas measurement devices (model code position 9 with the values: 70 or 50).

Options with CST, AC_ and C52 are available only for Ultimate transmitters (value U in model code position 1).

Advanced concentration function can be ordered with 1 to 4 different sets of pre-configured concentrations (AC1 – AC4).

For details about the device function refer to *Concentration and petroleum measurement* [> 63].

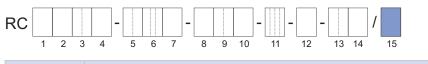
10.8.5 Batching function

Options Specification

BT Batching and filling function

For details about the device function refer to Batching function [65].

10.8.6 Viscosity function


RC	1	2	3	4]-	5	6	7	-	8	9	10] - [11	-	12	-	13	14	/	15			
Optio	ons		Ś	Spe	cif	ica	tion																	
VM			1	/isc	:05	sity	con	npu	ting	g fi	unc	tior	n fo	or lic	γu	ids								

For details about the device function refer to Viscosity function [66].

10.8.7 Insulation and heat tracing

These device options are available only for remote type with long neck.

Options	Specification
T10	Insulation
T21	Insulation and heat tracing, 1/2" ASME class 150, raised face
T22	Insulation and heat tracing, 1/2" ASME class 300, raised face
T26	Insulation and heat tracing, EN DN15 PN40
T31	Insulation, heat tracing with ventilation, $\frac{1}{2}$ " ASME class 150, raised face
T32	Insulation, heat tracing with ventilation, $\frac{1}{2}$ " ASME class 300, raised face
T36	Insulation, heat tracing with ventilation, EN DN15 PN40

Material of components

Component	Material
Insulation housing	Stainless steel 1.4301/304
Insulation material	Mineral wool (rock wool)
Heat tracing and ventilation lines	Stainless steel 1.4301/1.4306/304 and 1.4404/316L
Heat tracing and ventilation connections	Stainless steel 1.4404/316L; flanges acc. ASME or EN

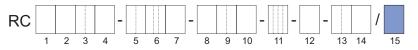
For dimensions of insulation and heating components see *Process connections, dimensions and weights of sensor* [> 41].

	RC	3 4 5 6 7 8 9 10 11 12 13 14 15						
Accordance with	Options	Specification						
terms of order	P2	Declaration of compliance with the order 2.1 according to EN 10204						
	P3	Quality Inspection Certificate (Inspection Certificate 3.1 according to EN 10204)						
Material	Options	Specification						
certificates	P6	Certificate of Marking Transfer and Raw Material Certificates (Inspection Certificate 3.1 according to EN 10204)						
Dye penetration test	Options	Specification						
of weld seams	PT	Dye penetrant test of process connection weld seams according to DIN EN ISO 3452-1, including certificate						
	PTA	Dye penetrant test of flange welding according to ASME V						
Positive Material	Options	Specification						
Identification of wetted parts	РМ	Positive Material Identification of wetted parts, including certificate (Inspection Certificate 3.1 according to EN 10204)						
Pressure testing	Options	Specification						
	P8	Hydrostatic Pressure Test Certificate (Inspection Certificate 3.1 according to EN 10204)						

10.8.8 Certificates

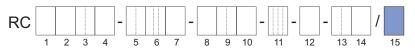
Welding certificates	Options	Specification							
Certificates	WP	 Welding certificates: WPS according to DIN EN ISO 15609-1 WPQR according to DIN EN ISO 15614-1 WQC according to DIN EN 287-1 or DIN EN ISO 6906-4 							
	WPA	Welding procedures and Certificate according to ASME IX							
	Only for the	e butt welding seam between the process connection and the flow divider.							
Mass flow		sed as fluid for calibrating the Rotamass.							
calibration	Options	Specification							
	K2	Customer-specific 5-point mass flow calibration with factory calibration cer- tificate (mass flow or volume flow of water). A table listing the desired cali- bration points must be supplied with the order.							
	K5	Customer-specific 10-point mass flow calibration with DAkkS calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order.							
Calibration	Options	Specification							
certificates	L2	The certificate confirms that the delivered instrument has undergone a cali- bration traceable to national standards, including a list of working standards used for calibration. Language: English/Japanese							
	L3	The certificate confirms that the delivered instrument has undergone a calibration traceable to national standards, including a list of primary standards to which the delivered product is traceable. Language: English/Japanese							
	L4	The certificate confirms that the delivered instrument has undergone a cali- bration traceable to national standards and that the calibration system of Rota Yokogawa is traceable to national standards. Language: English/Ja- panese							
Surfaces free of oil	Options	Specification							
and grease	H1	Degreasing of wetted surfaces according to ASTM G93-03 (Level C), including test report							
X-ray inspection of	Options	Specification							
flange weld seam		X-ray inspection of flange weld seam according to DIN EN ISO 17636-1/B							
	RT	Evaluation according to AD 2000 HP 5/3 and DIN EN ISO 5817/C, including certificate							
	RTA	X-ray test according to ASME V							

In case of devices from the Nano family, where model code position 9 includes the value C2, D2, C3 or D3, an X-ray inspection can only be performed on one of the two process connections as a result of structural conditions.


Combined certificates

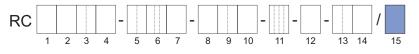
Options	Specification
	Combination of:
D 40	 P3: Quality Inspection Certificate
P10	 P6: Certificate of Marking Transfer and Raw Material Certificates
	 P8: Hydrostatic Pressure Test Certificate
	Combination of:
	 P3: Quality Inspection Certificate
P11	 P6: Certificate of Marking Transfer and Raw Material Certificates
	 PM: Positive Material Identification of wetted parts
	Combination of:
	 P3: Quality Inspection Certificate
P12	 P6: Certificate of Marking Transfer and Raw Material Certificates
	 PT: Dye penetration test according to DIN EN ISO 3452-1
	 P8: Hydrostatic Pressure Test Certificate
	Combination of:
	 P3: Quality Inspection Certificate
	 P6: Certificate of Marking Transfer and Raw
P13	Material Certificates
	 PT: Dye penetration test according to DIN EN ISO 3452-1
	PM: Positive Material Identification of wetted parts
	P8: Hydrostatic Pressure Test Certificate
	WP: Welding certificates
	Combination of:
P14	PM: Positive Material Identification of wetted parts D8: Hydrostatic Pressure Test Cartificate
	 P8: Hydrostatic Pressure Test Certificate WP: Welding certificates
	Combination of:
	 PTA: Dye Penetrant test of flange welding
DOO	according to ASME V
P20	 WPA: Welding procedures and Certificates
	according to ASME IX
	 RTA: X-ray test according to ASME V
	Combination of:
	 P3: Quality Inspection Certificate
	 P6: Certificate of Marking Transfer and Raw Material Certificates
P21	 P8: Hydrostatic Pressure Test Certificate
	 PTA: Dye Penetrant test of flange welding according to ASME V
	 WPA: Welding procedures and Certificates according to ASME IX
	 RTA: X-ray test according to ASME V

Options	Specification
P22	 Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates PM: Positive Material Identification of wetted parts PTA: Dye Penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V


10.8.9 Country-specific delivery

Options	Specification
PJ	Delivery to Japan ¹⁾
CN	Delivery to China
KC	Delivery to Korea
VE	Delivery to EAC area
VR	Delivery to EAC area and Russia Pattern Approval marking

¹⁾ Delivery with SI units pre-setting of transmitter and Quality Inspection Certificate (English/Japanese)


10.8.10 Country-specific application

Options	Specification
Q11	PESO approval delivery
QR	Primary calibration valid in Russia, including certificate

10.8.11 Tube health check

By way of the tube health check, the transmitter can determine whether the tube properties were altered due to corrosion or deposits and whether they could impact accuracy as a result.

Options	Specification
ТС	Tube health check

10.8.12 Fixing device

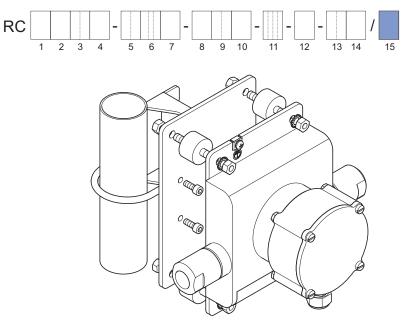


Fig. 50: Fixing device option PD for Rotamass Nano sensor

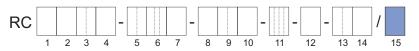
Options	Specification
PD	2" fixing device for sensor

This option cannot be used together with device option $T_{__}$.

Tab. 18: Materials of fixing device subject to sensor housing material

Model code position 7	Metal parts of rubber buffer	Other metal parts
0		Stainless steel 1.4301/304, Stainless steel 1.4404/316L
1	Stainless steel 1.4571/316Ti	Stainless steel 1.4404/316L

10.8.13 Measurement of heat quantity


RC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Options	Specification
CGC Measurement of the total transported energy content of a fuel in connection with a sensor for determining the fuel's calorific value (e.g. a gas chromato- graph, not included in scope of delivery). This option is available only together with model code position 13 JH to JN.	

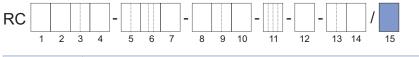
For details about the device function refer to Measurement of heat quantity [> 67].

10.8.14 Marine Approval

By ordering options MC2 and MC3 the device will carry a type approval mark by DNV GL. Ordering of fire retardant cable $(Y_{___})$ is mandatory with this option. In case of thermal oil applications option RT or RTA is mandatory. Please note that DNV GL has additional requirements regarding the process conditions as reproduced in the table below. The complete requirements can be found in the classification society's rules concerning the respective use case. Marine approval is not available for all device variants, for details see exclusions in *Overview options* [\triangleright 93].

	Option			
	MC2		MC3	
Dining overem for	Class II 1)		Class III 1)	
Piping system for	p in bar	T_{D} in °C	p in bar	T _D in °C
Steam	≤ 16	≤ 300	≤ 7	≤ 170
Thermal oil	≤ 16	≤ 300	≤ 7	≤ 150
Fuel oil, lubricating oil, flammable oil	≤ 16	≤ 150	≤ 7	≤ 60
Other media ²⁾	≤ 40	≤ 300	≤ 16	≤ 200

p : Design pressure


T_D : Design temperature

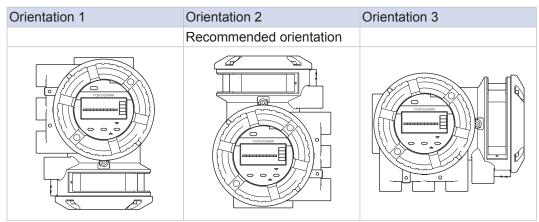
 $^{1)}$ both specified conditions (p and $T_{\scriptscriptstyle D})$ shall be met

²⁾ Cargo oil pipes on oil carriers and open ended pipes (drain overflows, vents, boiler escape pipes etc.) independently of the pressure and temperature, are pertaining to class III.

Options	Specification
MC2	Marine approval according to DNV GL piping class 2
MC3	Marine approval according to DNV GL piping class 3

10.8.15 Customer specific special product manufacture

Options	Specification
Z	Deviations from the specifications in this document are possible.


10.9 Ordering Instructions

Specify the following information when ordering a product:

- Model code
- Fluid name
- Language of the quick reference instruction manual:
 - English
 - French
 - German
 - Japanese
 - Russian
 - Korean
 - Chinese
- Display language and language pack (Display only present for value 1 on position 14 of the model code):
 - EN-Pack1 English
 - DE-Pack1 German
 - FR-Pack1 French
 - PT-Pack1 Portuguese
 - JA-Pack1 Japanese
 - IT-Pack1 Italian
 - EN-Pack2 English
 - DE-Pack2 German
 - RU-Pack2 Russian
 - PL-Pack2 Polish
 - KZ-Pack2 Kazakh
 - EN-Pack3 English
 - DE-Pack3 German
 - FR-Pack3 French
 - PT-Pack3 Portuguese
 - IT-Pack3 Italian
 - ES-Pack3 Spanish
 - CN-Pack3 Chinese

Orientation of the display (Display only present for value 1 on position 14 of the model code):

()

The parameter "Installation Orientation" in transmitter must be set by the customer according to the installation direction of the sensor.

- Tag No. to be engraved on the nameplate (option BG, up to 16 characters length)
- Software Tag No. (both short and long):
 - HART Tag No. (short): up to 8 characters length (Capital letters only)
 - HART Tag No. (long): up to 32 characters length
- Customer name for the certificates (option L2, L3, L4: up to 60 characters length)
- Advanced concentration type (option AC1 AC4, see Concentration and petroleum measurement [> 108]):
 - C01 Sugar / Water 0 85 °Bx, 0 80 °C
 - C02 NaOH / Water 2 50 WT%, 0 100 $^\circ\text{C}$
 - C03 KOH / Water 0 60 WT%, 54 100 °C
 - C04 NH4NO3 / Water 1 50 WT%, 0 80 °C
 - C05 NH4NO3 / Water 20 70 WT%, 20 100 °C
 - C06 HCI / Water 22 34 WT%, 20 40 °C
 - C07 HNO3 / Water 50 67 WT%, 10 60 °C
 - C09 H2O2 / Water 30 75 WT%, 4 44 °C
 - C10 Ethylene Glycol / Water 10 50 WT%, -20 40 °C
 - C11 Amylum = starch / Water 33 43 WT%, 35 45 °C
 - C12 Methanol / Water 35 60 WT%, 0 40 °C
 - C20 Alcohol / Water 55 100 VOL%, 10 40 °C
 - C21 Sugar / Water 40 80 °Bx, 75 100 °C
 - C30 Alcohol / Water 66 100 WT%, 15 40 $^\circ\text{C}$
 - C37 Alcohol / Water 66 100 WT%, 10 40 °C

All rights reserved. Copyright © 2018-05-18

YOKOGAWA ELECTRIC CORPORATION Headquarters 2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN Phone : 81-422-52-5555 Branch Sales Offices

Osaka, Nagoya, Hiroshima, Kurashiki, Fukuoka, Kitakyusyu

YOKOGAWA CORPORATION OF AMERICA

 Head Office
 CORFORMATION OF A

 12530 West Airport Blvd, Sugar Land,
 12530 West Airport Blvd, Sugar Land,

 12530 West Airport Blvd, Sugar Land,
 12830 West Airport Blvd, Sugar Land,

 Phone: 1-281-340-3838
 6eorgia Office

 2 Dart Road, Newnan, Georgia 30265, USA
 Phone: 1-800-888-6400/ 1-770-253-7000

 Fax: 1-770-254-0928
 Fax: 1-770-254-0928

YOKOGAWA AMERICA DO SUL LTDA. Praca Acapulco, 31 - Santo Amaro, Sáo Paulo/SP, BRAZIL, CEP-04675-190 Phone : 55-11-5681-2400 Fax : 55-11-5681-4434

YOKOGAWA EUROPE B. V. Euroweg 2, 3825 HD Amersfoort, THE NETHERLANDS

Phone : 31-88-4641000 Fax : 31-88-4641111

YOKOGAWA ELECTRIC CIS LTD.

Grokholskiy per 13 Building 2, 4th Floor 129090, Moscow, RUSSIA Phone : 7-495-737-7868 Fax : 7-495-737-7869

YOKOGAWA CHINA CO., LTD.

3F Tower D Cartelo Crocodile Building, No.568 West Tianshan Road, Shanghai 200353 CHINA Phone: 86-21-62396262 Fax: 86-21-62387866Z

YOKOGAWA ELECTRIC KOREA CO., LTD. (Yokogawa B/D, Yangpyeong-dong 4-Ga), 21, Seonyu-ro 45-gil, Yeongdeungpo-gu, Seoul, 150-866, KOREA Phone: 82-2-2628-6000 Fax: 82-2-2628-6400

YOKOGAWA ENGINEERING ASIA PTE. LTD. 5 Bedok South Road, Singapore 469270, SINGAPORE Phone : 65-6241-9933 Fax : 65-6241-2606

YOKOGAWA INDIA I TD.

Plot No.96, Electronic City Complex, Hosur Road, Bangalore - 560 100, INDIA Phone : 91-80-4158-6000 Fax : 91-80-2852-1442

YOKOGAWA AUSTRALIA PTY. LTD.

Tower A, 112-118 Talavera Road, Macquarie Park NSW 2113, AUSTRALIA Phone : 61-2-8870-1100 Fax : 61-2-8870-1111

YOKOGAWA MIDDLE EAST & AFRICA B.S.C.(C) P.O. Box 10070, Manama, Building 577, Road 2516, Busaiteen 225, Muharraq, Kingdom of BAHRAIN Phone : 973-17358100 Fax : 973-17336100

